计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (14): 205-207.
张 欣1,王 兵2,赵 璞1
ZHANG Xin1,WANG Bing2,ZHAO Pu1
摘要: 用支持向量回归(SVR)的方法分析和预测时间序列,可解决复杂非线性系统的建模问题。采用光滑化方法对SVR的基本算法进行改进,可降低计算的复杂度。将光滑支持向量回归(SSVR)算法应用于炉膛燃烧状态时间序列预测。对炉内火焰图像进行聚类分析,计算表征炉膛燃烧状态的状态指数,建立状态指数时间序列,并利用光滑支持向量回归算法构建预测模型。实验结果表明,SSVR方法具有更快的收敛速度、更好的拟合精度和良好的预测性能。