计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (10): 41-43.
• 学术探讨 • 上一篇 下一篇
张文林 李弼程 屈丹
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
Received:
Revised:
Online:
Published:
摘要: 支持向量机作为强大的理论工具和计算工具,已成功地应用在模式识别的众多领域中。本文研究了将支持向量机模型(SVM)应用于语言辨识的理论框架,提出了将Louradour序列核应用于语言辨识,并利用高斯混合模型(GMM)构造全局背景模型(UBM)对其进行了改进,从而导出了基于SVM-UBM的语言辨识系统。相关实验结果表明,该系统的识别率高于经典的高斯混合模型(GMM)和基于广义线性区分性核(GLDS)的支持向量机模型。
关键词: 语言辨识, 支持向量机, 序列核, 高斯混合模型, 全局背景模型
Abstract: As powerful theoretical and computational tools, support vector machines (SVMs) have been widely used in pattern classification of many areas. In this paper, we present a general framework for language identification using SVMs, introduce the use of Louradour sequence kernel into language identification system, and develop a universal background Gaussian Mixture Model to improve it’s performance. Experiment results demonstrate that the SVM-UBM system not only yields performance superior to those of a GMM classifier but also outperforms the system using Generalized Linear Discriminant Sequence (GLDS) Kernel.
Key words: language identification, support vector machine, sequence kernel, gaussian mixture model, universal background model
张文林 李弼程 屈丹. 基于SVM-UBM的语言辨识系统[J]. 计算机工程与应用, 2007, 43(10): 41-43.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I10/41