计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (24): 100-102.DOI: 10.3778/j.issn.1002-8331.2008.24.029

• 研发、设计、测试 • 上一篇    下一篇

基于遗传神经网络的自适应PID控制器的设计

高志安,李良光,樊 璠   

  1. 安徽理工大学 电气与信息工程学院,安徽 淮南 232001
  • 收稿日期:2007-10-23 修回日期:2008-01-17 出版日期:2008-08-21 发布日期:2008-08-21
  • 通讯作者: 高志安

Design of self-adaptive PID controller based on genetic neural networks

GAO Zhi-an,LI Liang-guang,FAN Fan   

  1. College of Electric Engineering,Anhui University of Science and Technology,Huainan,Anhui 232001,China
  • Received:2007-10-23 Revised:2008-01-17 Online:2008-08-21 Published:2008-08-21
  • Contact: GAO Zhi-an

摘要: 提出了一种基于遗传算法和神经网络的自适应PID控制器的设计方法。该控制器主要由三个部分组成:利用遗传算法优化PID参数,和RBF神经网络结合,对被控对象逼近,搜索出一组准优的初始参数; RBF神经网络完成对被控对象Jacobian信息辨识;基于单神经元的自适应PID控制器,在线调整PID参数,以确保系统的响应具有最优的动态和稳态性能。仿真结果表明,控制器具有响应速度快,稳态精度高等特点,可用于控制不同的对象和过程。

关键词: 遗传算法, 神经网络, 自适应, 神经元PID

Abstract: A self-adaptive PID controller based on genetic algorithm and neural networks is presented.It consists of three parts: PID parameters are optimized by the genetic algorithm,and genetic algorithm combined with the RBF neural networks approaches the controlled object,searching for a group of initial parameters;RBF neural networks get Jacobian information;A self-adaptive PID controller based on the single neural network adjusts the PID parameters on line to insure the optimal dynamic and steady response.The simulation results show that the controller has a fast response speed,high steady precision.It can be used in different objects and processes.

Key words: genetic algorithm, neural networks, self-adaptive, neuron PID