计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (23): 188-189.DOI: 10.3778/j.issn.1002-8331.2010.23.053

• 图形、图像、模式识别 • 上一篇    下一篇

参数凸曲线的性质及拐点判别算法

方 逵1,朱幸辉1,吴泉源2,王兴波1   

  1. 1.湖南农业大学 信息科学技术学院,长沙 410128
    2.国防科技大学 计算机学院,长沙 410073
  • 收稿日期:2009-02-09 修回日期:2009-03-30 出版日期:2010-08-11 发布日期:2010-08-11
  • 通讯作者: 方 逵

Inflection points algorithm and properties of parametric convex curves

FANG Kui1,ZHU Xing-hui1,WU Quan-yuan2,WANG Xing-bo1   

  1. 1.College of Information Science & Technology,Hunan Agricultural University,Changsha 410128,China
    2.School of Computer Science,National University of Defense Technology,Changsha 410083,China
  • Received:2009-02-09 Revised:2009-03-30 Online:2010-08-11 Published:2010-08-11
  • Contact: FANG Kui

摘要: 依据参数曲线凸性的原始几何定义,讨论了参数曲线的局部凸和全局凸性,得到了参数曲线局部凸和全局凸的若干性质。给出了参数曲线的拐点定义,讨论了参数曲线的拐点与局部性之间的关系,导出了参数曲线拐点判别的充要条件及算法。

关键词: 局部凸性, 全局凸性, 拐点, 相对曲率

Abstract: Based on the original geometrical definition of the convexity for planar parametric curve,the local and global convexity are discussed,and a few properties are obtained.In addition,the definition of inflection point is given,the relationship of local convexity and inflection points of planar parametric curve is discussed,a necessary and sufficient condition is presented for the distinguishable condition of inflection points.

Key words: local convexity, global convexity, inflection points, relative curvature

中图分类号: