摘要: 关联规则挖掘一直是数据挖掘中的重要组成部分。提出一个新算法DPCFP-growth算法。DPCFP-growth算法是基于MSApirori算法,采用了CFP-growth分而治之的思想,并弥补了CFP-growth算法的不足。CFP-growth算法运行时要把整个数据库中的数据压缩到一个MIS-tree中然后进行频繁模式挖掘。在大型数据库中CFP-growth算法会建立一个深度很深宽度很宽的CFP-tree,以至于内存往往不能满足其要求,被迫使用大量的辅存,致使算法的运行效率急剧下降。DPCFP-growth算法根据CFP-tree的特征,有效地把大数据库分为若干个内存可以满足其要求的子数据库,然后在每个子数据库中进行局部频繁模式挖掘,最终汇总这些频繁模式生成全局频繁模式。实验表明该算法是正确的,并且在大型数据挖掘中,比CFP-growth算法有一定的优越性。