计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (35): 229-231.DOI: 10.3778/j.issn.1002-8331.2008.35.069

• 工程与应用 • 上一篇    下一篇

基于粗糙集与神经网络的故障诊断研究

黄广君,郭洪涛,张孝国   

  1. 河南科技大学 电信学院,河南 洛阳 471003
  • 收稿日期:2007-12-19 修回日期:2008-03-06 出版日期:2008-12-11 发布日期:2008-12-11
  • 通讯作者: 黄广君

Study on fault diagnosis based on rough set and neural network

HUANG Guang-jun,GUO Hong-tao,ZHANG Xiao-guo   

  1. College of Electronic & Information Engineering,Henan University of Science and Technology,Luoyang,Henan 471003,China
  • Received:2007-12-19 Revised:2008-03-06 Online:2008-12-11 Published:2008-12-11
  • Contact: HUANG Guang-jun

摘要: 通过引入粗糙集理论,利用可辨识矩阵约简算法对故障诊断决策表进行属性约简,剔除其中不必要的属性,然后构造改进的BP神经网络作为粗糙集的后端处理机,构造了基于粗糙集与神经网络的故障诊断模型。仿真结果表明,该方法可以有效地减少输入层个数,简化神经网络结构,减少网络的训练时间,在故障诊断中有良好的应用前景。

关键词: 故障诊断, 神经网络, 粗糙集, 属性约简

Abstract: This paper introduces rough sets theory.And rough sets theory is used to eliminate unnecessary attributes from the decision table.Then make improvement BP network as the back processor of rough set,and a fault diagnosis model based on rough set and neural network.The result of emluator indicats that this method can reduce the needed training samples and simply the neural network structure and shortened the training time of the network.It is estimated that the optimized strategy may be further applied in fault diagnoses.

Key words: fault diagnosis, neural network, rough set, attribute reduction