摘要: 以独立分量分析(ICA)技术作为主要研究对象,对基于独立分量分析的定点算法的进行了详细的分析和推理。传统定点算法具有结构简单、运算速度快的特点,但是在图像盲分离中数据有时不能完全满足独立性假设,因此在有些情况下,该算法是否收敛仍具有不确定性。由此,提出了一种能够自适应调整学习率的改进定点图像盲分离方法。将该方法用于混合图像的分离中,较传统方法而言,有收敛速度更快、鲁棒性更强、对数据相关性要求相对较低的优点。计算估计图像的峰值信噪比可知,分离效果是十分有效的。可见,该算法是一种新的、快速有效的图像分离方法。