计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (13): 203-205.
毛玉明1,2,王英龙3,张立东3
MAO Yu-ming1,2,WANG Ying-long2,ZHANG Li-dong2
摘要: 智能交通系统可有效解决城市道路的拥挤,交通流量的预测是智能交通系统的关键技术之一。在各种预测方法中,BP神经网络的应用最普遍,并取得了许多成果。为了进一步提高BP神经网络的预测精度,采用了基于分段学习的双隐层BP神经网络对济南市经十路的交通流量进行了预测,并与相同结构未使用分段学习方法的BP神经网络预测所得结果进行了比较。实验数据显示采用分段学习的方法比未采用该方法的所得结果平均相对误差减少了2.52%。因此分段学习的双隐层BP神经网络可应用于预测道路交通流量。