计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (3): 45-46.

• 学术探讨 • 上一篇    下一篇

一种有理二次插值函数的凸性分析

邓四清1,方 逵2,3,谢 进4   

  1. 1.湘南学院 数学系,湖南 郴州 423000
    2.湖南农业大学 信息科学技术学院,长沙 410128
    3.湖南师范大学 数学与计算机科学学院,长沙 410081
    4.合肥学院 数理系,合肥 230601
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-01-21 发布日期:2008-01-21
  • 通讯作者: 邓四清

Convexity analysis for rational quadratic interpolation function

DENG Si-qing1,FANG Kui2,3,XIE Jin4   

  1. 1.Department of Mathematics,Xiangnan University,Chenzhou,Hunan 423000,China
    2.School of Information Science and Technology,Hunan Agricultural University,Changsha 410128,China
    3.School of Mathematics and Computer,Hunan Normal University,Changsha 410081,China
    4.Department of Mathematics and Physics,Hefei University,Hefei 230601,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2008-01-21 Published:2008-01-21
  • Contact: DENG Si-qing

摘要: 在给定的插值数据条件下,利用一种带参数的分母为二次的有理二次插值方法,通过调整插值函数中的参数,给出了插值曲线的保凸方法和该方法得以实现的充分必要条件。这种条件是对参数的简单的线性的不等式约束,容易在计算机辅助设计中得到实际应用。

关键词: 计算机应用, 曲线设计, 有理二次插值, 保凸控制

Abstract: A method is presented for controlling the convexity of interpolant curves based on a rational quadratic interpolation function with quadratic denominators.The sufficient and necessary conditions are derived for the interpolating curves to be convex or concave in the interpolating intervals.

Key words: computer application, curve design, rational quadratic interpolation, convexity control