计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (1): 33-33.

• 学术探讨 • 上一篇    下一篇

基于Gabor滤波特征和支持向量机的人脸检测

林宇生,杨静宇   

  1. 南京理工大学
  • 收稿日期:2006-05-09 修回日期:1900-01-01 出版日期:2007-01-01 发布日期:2007-01-01
  • 通讯作者: 林宇生 lyswd

Face Detection based-on Gabor Filter and support vector machine

,Jing-Yu Ynag   

  1. 南京理工大学
  • Received:2006-05-09 Revised:1900-01-01 Online:2007-01-01 Published:2007-01-01

摘要: 摘要:人脸检测是人脸识别与图像及视频检索的一项重要任务。本文提出了一种基于Gabor滤波特征和支持向量机的正面人脸检测方法。算法首先利用了Gabor滤波器的良好的空间位置与方向的选择特性,本文采用了四种方向的Gabor滤波器提取人脸样本图像特征并用PCA方法对特征降维,然后用已降维的特征训练支持向量机分类器。最后应用SVM分类检测人脸。实验结果证明该方法行是十分有效的。

关键词: Gabor滤波器, 支持向量机, 人脸检测

Abstract: Abstract: Face detection is an important task in face recognition and content-based image and video retrieval. A method of frontal face detection based-on feature extract using Gabor filter features and support vector machines is proposed in this paper. Take advantages of the desirable characteristics of spatial locality and orientation selectivity of Gabor filters, the paper designs four filters corresponding to four orientation for extracting features from face images. After extracting the features, a reduced feature subspace is learned by principal component analysis. The feature vectors based on Gabor filers is used as the input of support vector machines to be trained and classified. A test image is detected by the trained support vector machines. The experiment results show the method can effectively detect face

Key words: Gabor filter, support vector machines, face detection