计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (9): 28-30.

• 学术探讨 • 上一篇    下一篇

基于均匀混合模型运动检测

张海青 李厚强   

  1. 中国科学技术大学电子工程与信息科学系 中国科学技术大学电子工程与信息科学系
  • 收稿日期:2006-10-09 修回日期:1900-01-01 出版日期:2007-03-21 发布日期:2007-03-21
  • 通讯作者: 张海青

Automatic Learning-rate Regulation for Real-time Motion Detection with Uniform Mixture Model

  • Received:2006-10-09 Revised:1900-01-01 Online:2007-03-21 Published:2007-03-21

摘要: 本文提出了一种静止摄像机条件下的实时运动检测方法,它针对常用的高斯混合模型的不足,提出了学习率自适应调整和均匀混合模型两个思想,进一步提高了运动检测的可靠性和实时性。均匀混合模型简化了高斯混合模型,在不影响检测效果的前提下,降低了算法复杂度,缩短了程序运行时间。学习率自适应调整策略,能够使模型快速适应背景变化,减轻了混合高斯模型的缺陷——“空洞”效应和“影子”效应等,提高了算法的可靠性。在对视频序列的实验中,该算法显示了较好的时间效率和检测性能,说明该方法不仅继承了混合高斯模型的优点,还克服了其不足,对背景的快速变化有了更强的适应能力。

关键词: 实时运动检测, 背景模型, 高斯混合模型, 均匀混合模型, 学习率自适应调整

Abstract: There are numerous approaches to Real-time segmentation of moving regions in image sequences. A typical method is background subtraction. One of the successful solutions to these problems is to use a gaussian mixture model (GMM) per pixel. However, the method suffers from fixed learning rate. In addition, it requires excessive computational resources or time in busy environments. This paper presents a method which adopts uniformity mixture model with adaptive learning rate. This allows our system learn faster and more accurately as well as adapt effectively to changing environments. A comparison has been made. The results show the speed of learning and the accuracy of the model using our method over the gaussian mixture model.

Key words: Real-time motion detection, background model, gaussian mixture model, uniformity mixture model, adaptive learning rate