计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (7): 230-234.DOI: 10.3778/j.issn.1002-8331.2009.07.070

• 工程与应用 • 上一篇    下一篇

基于高斯滤波和信息熵原理的Ra评定研究

钟艳如1,郭德伟1,黄美发2   

  1. 1.桂林电子科技大学 计算机与控制学院,广西 桂林 541004
    2.桂林电子科技大学 机电工程学院,广西 桂林 541004
  • 收稿日期:2008-01-03 修回日期:2008-04-22 出版日期:2009-03-01 发布日期:2009-03-01
  • 通讯作者: 钟艳如

Application of Gauss filtering and information entropy principle in verification of arithmetic mean deviation

ZHONG Yan-ru1,GUO De-wei1,HUANG Mei-fa2   

  1. 1.School of Computer and Control,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China
    2.School of Mechanical and Electrical Engineering,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China
  • Received:2008-01-03 Revised:2008-04-22 Online:2009-03-01 Published:2009-03-01
  • Contact: ZHONG Yan-ru

摘要: 提出了一种表面粗糙度Ra测量不确定度的计算方法。该方法依据高斯滤波的基本原理计算检验结果,并根据信息熵与不确定度的关系计算检验结果的不确定度。实验结果表明,根据Ra的测量结果及其不确定度和ISO14253-1给出的判定原则,可以定量地判定产品是否合格,从而减少产品的误收和误废。最后,对利用高斯滤波法和最小二乘法计算的检验结果及其不确定度进行对比,认为在考虑检验结果不确定因素的基础上,高斯滤波法更适合表面粗糙度参数的评定。

关键词: 新一代GPS标准, 不确定度, 信息熵, 高斯滤波, 算术平均偏差(Ra

Abstract: A calculation method for uncertainty of Ra is proposed to assure integrity of the verification result and its validity.The method calculates the verification results by the basic principle of Gauss filtering of Ra in surface roughness.Then,the uncertainty of the verification results is computed by the relations between information entropy and uncertainty.The experiment results demonstrate that the components can be accepted or rejected quantitatively by the decision rules provided by ISO 14253-1,on the basis of the result of Ra and uncertainty.Therefore,this method can decrease the number of parts of mis-acceptance and mis-rejection.Finally,the paper compares the verification result and its validity calculated by the least squares with calculated by the Gauss filtering,and the Gauss filtering is better than the least squares to assess the Ra of surface roughness when the uncertainly of the verification results is given.

Key words: new generation of GPS standards, uncertainty calculation, information entropy, Gauss filtering, arithmetic mean deviation(Ra