计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (14): 132-134.DOI: 10.3778/j.issn.1002-8331.2010.14.039

• 数据库、信号与信息处理 • 上一篇    下一篇

使用Fisher线性判别方法的提取分类器

李文斌,陈嶷瑛,张 娟,张新东   

  1. 石家庄经济学院 信息工程学院,石家庄 050031
  • 收稿日期:2008-10-30 修回日期:2009-11-02 出版日期:2010-05-11 发布日期:2010-05-11
  • 通讯作者: 李文斌

Using Fisher linear discriminant analysis to extracting classifiers

LI Wen-bin,CHEN Yi-ying,ZHANG Juan,ZHANG Xin-dong   

  1. School of Information and Engineering,Shijiazhuang University of Economics,Shijiazhuang 050031,China
  • Received:2008-10-30 Revised:2009-11-02 Online:2010-05-11 Published:2010-05-11
  • Contact: LI Wen-bin

摘要: 为了消除个体分类器间的相关性,提高集成器分类性能及稳定性,提出了基于Fisher线性判别方法的分类器提取方法。该方法将高维分类器空间压缩至低维分类器空间,并在该空间内学习集成器。在多个数据集上的比较实验结果表明,该方法可行,其集成性能较理想。

关键词: 机器学习, 数据挖掘, 文本处理, 分类

Abstract: In order to eliminate relativity between ensembled classifiers and improve effect and stability of combiner,an approach extracting classifiers based on Fisher linear discriminant analysis is proposed.It can reduce classifier space with high dimension,and then learn a combiner in lower dimension space.The compared results obtained on multiple public avaiable datasets show that the method is feasible.Its performance is perfect.

Key words: machine learning, data mining, text processing, classification

中图分类号: