计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (25): 57-59.

• 学术探讨 • 上一篇    下一篇

用于求解函数优化的蚁群算法设计

杜呈欣1,陈小强2,熊伟清3   

  1. 1.兰州交通大学 电子与信息工程学院,兰州 730070
    2.兰州交通大学 自动化与电气工程学院,兰州 730070
    3.宁波大学 信息科学与工程学院,浙江 宁波 315211
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-09-01 发布日期:2007-09-01
  • 通讯作者: 杜呈欣

Ant colony algorithm design for function optimization

DU Cheng-xin1,CHEN Xiao-qiang2,XIONG Wei-qing3   

  1. 1.School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.School of Automatization and Electric Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    3.Faculty of Information Science and Engineering,Ningbo University,Ningbo,Zhejiang 315211,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-09-01 Published:2007-09-01
  • Contact: DU Cheng-xin

摘要: 为了求解一般的函数优化,在对标准蚁群算法研究的基础上,将遗传算法的编码方式引入蚁群算法,对蚁群算法的信息素更新进行改进,并提出一种搜索矩阵表达方式,减少了搜索矩阵的规模,从而提高了搜索效率。通过对几个经典测试函数的求解,证明了算法的有效性。

关键词: 蚁群算法, 函数优化, TSP, 遗传算法

Abstract: To solve function optimization problem,we have described ant colony algorithm adding binary coding of genetic algorithm and developed pheromone update strategy.In the experiment,we have used a new structure of searching matrix.Because the matrix’s dimension decreases,the performance of algorithm improves considerably.The improved algorithm has been tested for variety of different classical test functions.And the algorithm can handle these optimization problems very wel1.

Key words: ant colony algorithm, function optimization, TSP, genetic algorithm