计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (33): 124-126.DOI: 10.3778/j.issn.1002-8331.2010.33.035

• 数据库、信号与信息处理 • 上一篇    下一篇

基于数据流模型的模糊聚类

张 博,陈 光,王 旭   

  1. 东华大学 信息科学与技术学院,上海 201620
  • 收稿日期:2009-03-31 修回日期:2009-05-18 出版日期:2010-11-21 发布日期:2010-11-21
  • 通讯作者: 张 博

Fuzzy clustering algorithm for data stream

ZHANG Bo,CHEN Guang,WANG Xu   

  1. College of Information Science and Technology,Donghua University,Shanghai 201620,China
  • Received:2009-03-31 Revised:2009-05-18 Online:2010-11-21 Published:2010-11-21
  • Contact: ZHANG Bo

摘要: 模糊聚类是数据挖掘中一个重要聚类算法。当前,基于数据流模型的聚类算法已有了广泛的研究,但这些算法均为硬聚类,尚未见数据流上进行模糊聚类的文献。提出一种针对数据流模型的加权模糊聚类算法,基于真实数据集合和人工数据集的实验表明该算法比传统的模糊聚类算法具有更好的聚类性能。

关键词: 数据流, 模糊C-均值, 聚类, 加权模糊C-均值

Abstract: FCM is an important clustering algorithm.Though already lots of clustering algorithms for data stream have been presented,they all belong to hard clustering.There are not fuzzy clustering algorithms on data sets till now.Fuzzy clustering algorithm is presently not used.A weighted fuzzy algorithm for clustering data stream is brought forward.Empirical evidence of this algorithm’s superiority over the common FCM algorithms on the real data sets and the synthetic data sets is given.

Key words: data stream, fuzzy C-means, cluster, weighted fuzzy C-means

中图分类号: