计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (33): 215-217.DOI: 10.3778/j.issn.1002-8331.2010.33.061

• 图形、图像、模式识别 • 上一篇    下一篇

结合小波变换与图像分割的快速目标提取

王建青1,郭 敏1,徐秋平1,2   

  1. 1.陕西师范大学 计算机科学学院,西安 710062
    2.武警工程学院 教育技术中心,西安 710086
  • 收稿日期:2009-03-23 修回日期:2009-05-18 出版日期:2010-11-21 发布日期:2010-11-21
  • 通讯作者: 王建青

Fast object extraction based on wavelet transform and graph cuts

WANG Jian-qing1,GUO Min1,XU Qiu-ping1,2   

  1. 1.School of Computer Science,Shaanxi Normal University,Xi’an 710062,China
    2.Instructional Technology Centre of Engineering College of Armed Police Force,Xi’an 710086,China
  • Received:2009-03-23 Revised:2009-05-18 Online:2010-11-21 Published:2010-11-21
  • Contact: WANG Jian-qing

摘要: 基于图割理论的GrabCut算法具有全局最优性和结合多种知识的统一性,但其基于全部像素点的参数估计以及为达到一定分割精度采取的迭代求解模式,使算法效率大大降低。以GrabCut算法为基础,通过小波变换将图像分解,用分解后低频图像的像素点作为GMM参数迭代估计的样本点,减小了问题规模。实验结果表明,算法的效率得到较大提高。

关键词: 小波变换, 图像分割, 高斯混合模型, 目标提取

Abstract: GrabCut algorithm based on graph cuts has the global optimality and the unity of combining multiple knowledge.However,such algorithm is less efficient because it uses the whole pixels to initialize the GMM parameters and uses iterative algorithm to obtain exactitude.On the basis of GrabCut algorithm,this paper processes the image using wavelet transform,and then estimates the GMM parameters with low-frequency image’s pixels,sharply decreases the problem scale.The experiments show that this method significantly improves the algorithm’s efficiency.

Key words: wavelet transform, graph cuts, Gaussian Mixture Model(GMM), object extraction

中图分类号: