计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (12): 52-54.DOI: 10.3778/j.issn.1002-8331.2009.12.017
杨 韬1,邵良杉2
YANG Tao1,SHAO Liang-shan2
摘要: 对于多维函数的最优解搜索,粒子群优化算法存在前期易陷入局部最优,后期收敛速度缓慢的问题。将改进的k均值聚类分析策略与PSO相结合提出了一种混合粒子群优化算法CA-PSO。在算法中,利用改进的k均值聚类分析方法将粒子群划分成若干个子群,结合PSO的隐含并行搜索的优势增强了寻优性能。不仅增加了粒子间的信息交换,抑制了早熟收敛,并且提高了全局寻优速度和计算精度。理论证明,在一定条件下,CA-PSO具有稳定收敛性。仿真结果表明,CA-PSO性能优于基本粒子群优化算法。