Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (17): 47-61.DOI: 10.3778/j.issn.1002-8331.2411-0100

• Research Hotspots and Reviews • Previous Articles     Next Articles

Progress in Application of Deep Learning in Liver and Liver Tumor Segmentation

CUI Hui, GUO Yinghui, CAI Xiaohong, WANG Xiaoyan   

  1. 1.School of Medical Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
    2.College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
  • Online:2025-09-01 Published:2025-09-01

深度学习在肝脏及肝脏肿瘤分割中的应用进展

崔慧,郭英慧,蔡肖红,王晓燕   

  1. 1.山东中医药大学 医学信息工程学院,济南 250355
    2.山东中医药大学 中医学院,济南 250355

Abstract: Liver cancer is a malignant tumor with increasing morbidity and mortality. Precise segmentation of the liver and tumor is crucial for diagnosing and treating this disease. Traditional liver and tumor segmentation relies on manual work by doctors, which is time-consuming, experience-dependent, and challenging to ensure accuracy and efficiency in large-scale data processing. Recent advances in deep learning, particularly with its automatic feature extraction capabilities, have significantly improved liver and tumor segmentation. This review introduces widely-used public datasets and evaluation metrics, and summarizes progress in liver and tumor segmentation from supervised and unsupervised learning perspectives. Advantages and limitations of various models are discussed, and performance comparisons across methods are presented. Finally, limitations and challenges in current research are highlighted, along with future research directions, providing a reference for further studies.

Key words: liver and liver tumors, image segmentation, deep learning, supervised learning, unsupervised learning

摘要: 肝癌作为一种恶性肿瘤,其发病率和死亡率正呈逐年上升趋势,临床中精准分割肝脏与肿瘤对肝癌的诊断与治疗至关重要。传统的肝脏及肿瘤分割依赖医生手工操作,过程耗时且高度依赖医生经验,在大规模数据处理中难以确保效率和精度,且易因主观判断差异导致误差。近年来,深度学习因能自动提取图像特征被广泛应用于医学图像处理,在肝脏及肝脏肿瘤分割任务中也取得了显著进展。为更深入开展深度学习在肝脏及肝脏肿瘤分割的应用研究,从常用公开数据集及评价指标入手,分别从有监督与无监督学习的角度,梳理近年来深度学习在肝脏及其肿瘤分割领域的应用进展,总结各模型的优缺点,对比各类方法的性能差异,并以此为基础讨论现有研究尚存的不足及挑战,展望其未来发展方向,以期为进一步研究提供参考。

关键词: 肝脏及肝脏肿瘤, 图像分割, 深度学习, 有监督学习, 无监督学习