
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (17): 47-61.DOI: 10.3778/j.issn.1002-8331.2411-0100
• Research Hotspots and Reviews • Previous Articles Next Articles
CUI Hui, GUO Yinghui, CAI Xiaohong, WANG Xiaoyan
Online:2025-09-01
Published:2025-09-01
崔慧,郭英慧,蔡肖红,王晓燕
CUI Hui, GUO Yinghui, CAI Xiaohong, WANG Xiaoyan. Progress in Application of Deep Learning in Liver and Liver Tumor Segmentation[J]. Computer Engineering and Applications, 2025, 61(17): 47-61.
崔慧, 郭英慧, 蔡肖红, 王晓燕. 深度学习在肝脏及肝脏肿瘤分割中的应用进展[J]. 计算机工程与应用, 2025, 61(17): 47-61.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2411-0100
| [1] 王培宇, 黄祺, 王少东, 等. 《全球癌症统计数据2022》要点解读[J]. 中国胸心血管外科临床杂志, 2024, 31(7): 933-954. WANG P Y, HUANG Q, WANG S D, et al. Interpretation of the key points of “global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries”[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2024, 31(7): 933-954. [2] BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2024, 74(3): 229-263. [3] 郭振宁. 超声造影诊断微小原发性肝癌患者临床价值研究[J]. 实用肝脏病杂志, 2018, 21(5): 741-744. GUO Z N. Contrast-enhanced ultrasound monitoring in early diagnosis of patients with small primary liver cancer[J]. Journal of Practical Hepatology, 2018, 21(5): 741-744. [4] 朱风叶, 李红, 乔继红, 等. CT与MRI在诊断原发性肝癌介入术后病灶残留及复发中的应用价值[J]. 中国CT和MRI杂志, 2018, 16(3): 76-78. ZHU F Y, LI H, QIAO J H, et al. The value of CT and MRI in the diagnosis of the residual and recurrent lesion of primary liver cancer after interventional therapy[J]. Chinese Journal of CT and MRI, 2018, 16(3): 76-78. [5] 冯焕, 姜晖, 王雪梅. 功能磁共振成像在肿瘤学领域的应用[J]. 电工技术学报, 2021, 36(4): 705-716. FENG H, JIANG H, WANG X M. Application of functional magnetic resonance imaging in the field of oncology[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 705-716. [6] ALTINI N, PRENCIPE B, CASCARANO G D, et al. Liver, kidney and spleen segmentation from CT scans and MRI with deep learning: a survey[J]. Neurocomputing, 2022, 490: 30-53. [7] 谭健权, 伊力亚尔·加尔木哈买提. 基于深度学习的医学图像分割综述[J]. 电脑知识与技术, 2024, 20(18): 97-99. TAN J Q. YILIYAER J. Summary of medical image segmentation based on deep learning[J]. Computer Knowledge and Technology, 2024, 20(18): 97-99. [8] LUNDERVOLD A S, LUNDERVOLD A. An overview of deep learning in medical imaging focusing on MRI[J]. Zeitschrift Für Medizinische Physik, 2019, 29(2): 102-127. [9] 王霄, 朱恩照, 艾自胜. 卷积神经网络的原理及其在医学影像诊断中的应用[J]. 中国医学物理学杂志, 2022, 39(12): 1485-1489. WANG X, ZHU E Z, AI Z S. Principle of convolutional neural network and its applications in medical imaging diagnosis[J]. Chinese Journal of Medical Physics, 2022, 39(12): 1485-1489. [10] 张欢, 刘静, 冯毅博, 等. U-Net及其在肝脏和肝脏肿瘤分割中的应用综述[J]. 计算机工程与应用, 2022, 58(2): 1-14. ZHANG H, LIU J, FENG Y B, et al. Review of U-Net and its application in segmentation of liver and liver tumors[J]. Computer Engineering and Applications, 2022, 58(2): 1-14. [11] GUL S, KHAN M S, BIBI A, et al. Deep learning techniques for liver and liver tumor segmentation: a review[J]. Computers in Biology and Medicine, 2022, 147: 105620. [12] 陈英, 郑铖, 易珍, 等. 肝脏及肿瘤图像分割方法综述[J]. 计算机应用研究, 2022, 39(3): 641-650. CHEN Y, ZHENG C, YI Z, et al. Review of liver and tumor image segmentation methods[J]. Application Research of Computers, 2022, 39(3): 641-650. [13] 夏栋, 张义, 巫彤宁, 等. 深度学习在肝脏肿瘤CT图像分割中的应用[J]. 北京生物医学工程, 2023, 42(3): 308-314. XIA D, ZHANG Y, WU T N, et al. Applications of deep learning in liver tumor segmentation from CT scans[J]. Beijing Biomedical Engineering, 2023, 42(3): 308-314. [14] EGALA R, SAIRAM M V S. A review on medical image analysis using deep learning[C]//Proceedings of the 5th International Conference on Innovative Product Design and Intelligent Manufacturing Systems, 2024: 7. [15] KAVUR A E, GEZER N S, BAR?? M, et al. CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation[J]. Medical Image Analysis, 2021, 69: 101950. [16] BILIC P, CHRIST P, LI H B, et al. The liver tumor segmentation benchmark (lits)[J]. Medical Image Analysis, 2023, 84: 102680. [17] SOLER L, HOSTETTLER A, AGNUS V, et al. 3D image reconstruction for comparison of algorithm database[EB/OL]. (2010-01-08) [2023-12-23]. https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01. [18] AL-SHAIKHLI S D S, YANG M, ROSENHAHN B. Automatic 3D liver segmentation using sparse representation of global and local image information via level set formulation[J]. arXiv:1508.01521, 2015. [19]于营, 王春平, 付强, 等. 语义分割评价指标和评价方法综述[J]. 计算机工程与应用, 2023, 59(6): 57-69. YU Y, WANG C P, FU Q, et al. Survey of evaluation metrics and methods for semantic segmentation[J]. Computer Engineering and Applications, 2023, 59(6): 57-69. [20] 蒋西然, 蒋韬, 孙嘉瑶, 等. 深度学习人工智能技术在医学影像辅助分析中的应用[J]. 中国医疗设备, 2021, 36(6): 164-171. JIANG X R, JIANG T, SUN J Y, et al. Deep learning in computer aided analyses of medical images[J]. China Medical Devices, 2021, 36(6): 164-171. [21] ALJABRI M, ALGHAMDI M. A review on the use of deep learning for medical images segmentation[J]. Neurocomputing, 2022, 506: 311-335. [22] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [23] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. [24] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241. [25] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508-2512. LI Y D, HAO Z B, LEI H. Survey of convolutional neural network[J]. Journal of Computer Applications, 2016, 36(9): 2508-2512. [26] AGHAMOHAMMADI A, RANJBARZADEH R, NAIEMI F, et al. TPCNN: two-path convolutional neural network for tumor and liver segmentation in CT images using a novel encoding approach[J]. Expert Systems with Applications, 2021, 183: 115406. [27] KHAN R, SU L, ZAMAN A, et al. Customized m-RCNN and hybrid deep classifier for liver cancer segmentation and classification[J]. Heliyon, 2024, 10(10): e30528. [28] SELVARAJ A, NITHIYARAJ E. CEDRNN: a convolutional encoder-decoder residual neural network for liver tumour segmentation[J]. Neural Processing Letters, 2023, 55(2): 1605-1624. [29] MENG L, TIAN Y, BU S. Liver tumor segmentation based on 3D convolutional neural network with dual scale[J]. Journal of Applied Clinical Medical Physics, 2020, 21(1): 144-157. [30] BUDAK ü, GUO Y H, TANYILDIZI E, et al. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation[J]. Medical Hypotheses, 2020, 134: 109431. [31] ANIL B C, DAYANANDA P. Automatic liver tumor segmentation based on multi-level deep convolutional networks and fractal residual network[J]. IETE Journal of Research, 2023, 69(4): 1925-1933. [32] AHMAD M, QADRI S F, QADRI S, et al. A lightweight convolutional neural network model for liver segmentation in medical diagnosis[J]. Computational Intelligence and Neuroscience, 2022, 2022: 7954333. [33] 李梦怡, 朱定局. 基于全卷积网络的图像语义分割方法综述[J]. 计算机系统应用, 2021, 30(9): 41-52. LI M Y, ZHU D J. Review on image semantic segmentation based on fully convolutional network[J]. Computer Systems & Applications, 2021, 30(9): 41-52. [34] ROTH H R, ODA H, ZHOU X, et al. An application of cascaded 3D fully convolutional networks for medical image segmentation[J]. Computerized Medical Imaging and Grapics, 2018, 66: 90-99. [35] ALIRR O I. Deep learning and level set approach for liver and tumor segmentation from CT scans[J]. Journal of Applied Clinical Medical Physics, 2020, 21(10): 200-209. [36] CHRIST P F, ETTLINGER F, GRüN F, et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks[J]. arXiv:1702. 05970, 2017. [37] CHLEBUS G, SCHENK A, MOLTZ J H, et al. Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing[J]. Sci Rep, 2018, 8(1): 15497. [38] RAFIEI S, NASR-ESFAHANI E, NAJARIAN K, et al. Liver segmentation in CT images using three dimensional to two dimensional fully convolutional network[C]//Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 2067-2071. [39] JIANG H Y, SHI T Y, BAI Z Q, et al. AHCNet: an application of attention mechanism and hybrid connection for liver tumor segmentation in CT volumes[J]. IEEE Access, 2019, 7: 24898-24909. [40] HAN Y X, LI X L, WANG B, et al. Boundary loss-based 2.5D fully convolutional neural networks approach for segmentation: a case study of the liver and tumor on computed tomography[J]. Algorithms, 2021, 14(5): 144. [41] DONG X, ZHOU Y Z, WANG L T, et al. Liver cancer dete-ction using hybridized fully convolutional neural network based on deep learning framework[J]. IEEE Access, 2020, 8: 129889-129898. [42] HARIPRIYA T, DHARMARAJAN K, CHOWDHURY S. An innovative research of liver malignancy imaging using HFCNN based on deep neural network model[J]. Samvakti Journal of Research in Information Technology, 2024, 5(1): 1-16. [43] 崔珂, 田启川, 廉露. 基于U-Net变体的医学图像分割算法综述[J]. 计算机工程与应用, 2024, 60(11): 32-49. CUI K, TIAN Q C, LIAN L. Review of medical image segmentation algorithms based on U-Net variants[J]. Computer Engineering and Applications, 2024, 60(11): 32-49. [44] CZIPCZER V, MANNO-KOVACS A. Adaptable volumetric liver segmentation model for CT images using region-based features and convolutional neural network[J]. Neurocomputing, 2022, 505: 388-401. [45] LI S, TSO G K F, HE K J. Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation[J]. Expert Systems with Applications, 2020, 145: 113131. [46] DENG Y J, HOU Y L, YAN J T, et al. ELU-Net: an efficient and lightweight U-Net for medical image segmentation[J]. IEEE Access, 2022, 10: 35932-35941. [47] ALAFER F, SIDDIQI H M, KHAN S M, et al. A comprehensive exploration of L-UNet approach: revolutionizing medical image segmentation[J]. IEEE Access, 2024, 12: 140769-140791. [48] LEE Z Q, QI S M, FAN C C, et al. RA V-Net: deep learning network for automated liver segmentation[J]. Physics in Medicine & Biology, 2022, 67(12): 125022. [49] NAAQVI Z, HAIDER M A, FAHEEM M R, et al. Modified U-Net model for segmentation and classification of liver cancer using CT images[J]. Journal of Computing & Biomedical Informatics, 2024: 1-12. [50] 杨振, 邸拴虎, 赵于前, 等. 基于级联 Dense-UNet 和图割的肝脏肿瘤自动分割[J]. 电子与信息学报, 2022, 44(5): 1683-1693. YANG Z, DI S H, ZHAO Y Q, et al. Automatic liver tumor segmentation based on cascaded Dense-UNet and graph cuts [J]. Journal of Electronics & Information Technology, 2022, 44(5): 1683-1693. [51] SABIR M W, KHAN Z, SAAD N M, et al. Segmentation of liver tumor in CT scan using ResU-Net[J]. Applied Sciences, 2022, 12(17): 8650. [52] LI J, LIU K Y, HU Y T, et al. Eres-UNet++: liver CT image segmentation based on high-efficiency channel attention and Res-UNet++[J]. Computers in Biology and Medicine, 2023, 158: 106501. [53] DING J S, NI W, WAN J H, et al. MulA-nnUNet: a multi-attention enhanced nnUNet framework for 3D abdominal multi-organs segmentation[J]. IEEE Access, 2024, 12: 106658-106671. [54] 杨本臣, 贾宇航, 金海波. 融合多分支特征的肝脏和肝脏肿瘤的体积分割[J]. 计算机工程, 2023, 49(10): 194-201. YANG B C, JIA Y H, JIN H B. Volume segmentation of liver and liver tumor with fusion of multi-branch features[J]. Computer Engineering, 2023, 49(10): 194-201. [55] OU J J, JIANG L F, BAI T, et al. ResTransUnet: an effective network combined with Transformer and U-Net for liver segmentation in CT scans[J]. Computers in Biology and Medicine, 2024, 177: 108625. [56] LI L, MA H. RDCTrans U-Net: a hybrid variable architecture for liver CT image segmentation[J]. Sensors (Basel), 2022, 22(7): 2452. [57] 陈丽芳, 罗世勇. 融合卷积和Transformer的多尺度肝肿瘤分割方法[J]. 计算机工程与应用, 2024, 60(4): 270-279. CHEN L F, LUO S Y. Multi-scale liver tumor segmentation algorithm by fusing convolution and transformer[J]. Computer Engineering and Applications, 2024, 60(4): 270-279. [58] 马露凡, 罗凤, 严江鹏, 等. 深度医学图像配准研究进展: 迈向无监督学习[J]. 中国图象图形学报, 2021, 26(9): 2037-2057. MA L F, LUO F, YAN J P, et al. Deep-learning based medical image registration pathway: towards unsupervised learning[J]. Journal of Image and Graphics, 2021, 26(9): 2037-2057. [59] RAZA K, SINGH N K. A tour of unsupervised deep learning for medical image analysis[J]. Current Medical Imaging, 2021, 17(9): 1059-1077. [60] XUN S Y, LI D W, ZHU H, et al. Generative adversarial networks in medical image segmentation: a review[J]. Computers in Biology and Medicine, 2022, 140: 105063. [61] SONG C, HE B, CHEN H, et al. Non-contrast CT liver seg-mentation using CycleGAN data augmentation from contrast enhanced CT[C]//Proceedings of the 3rd International Workshop on Interpretable and Annotation-Efficient Learning for Medical Image Computing, 2020: 122-129. [62] LI H, IWAMOTO Y, HAN X, et al. An accurate unsupervised liver lesion detection method using pseu-do-lesions[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 214-223. [63] WANG L, GUO D, WANG G, et al. Annotation-efficient learning for medical image segmentation based on noisy pseudo labels and adversarial learning[J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2795-2807. [64] RAFIQ M, ALI H, MUJTABA G, et al. Cross modality medical image synthesis for improving liver segmentation[J]. arXiv:2503.00945, 2025. [65] LIU Y, MENG L, ZHONG J. MAGAN: mask attention generative adversarial network for liver tumor CT image synthesis[J]. Journal of Healthcare Engineering, 2021, 2021: 6675259. [66] LIU Y, YANG F, YANG Y. A partial convolution generative adversarial network for lesion synthesis and enhanced liver tumor segmentation[J]. Journal of Applied Clinical Medical Physics, 2023, 24(4): e13927. [67] ZHENG Z C, WANG M, FAN C, et al. Light&fast generative adversarial network for high-fidelity CT image synthesis of liver tumor[J]. Computer Methods and Programs in Biomedicine, 2024, 254: 108252. [68] ZHANG Y, WU J, JIANG B X, et al. Deep learning and unsupervised fuzzy C-means based level-set segmentation for liver tumor[C]//Proceedings of the IEEE 17th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2020: 1193-1196. [69] AL-SAEED Y, SOLIMAN H, ELMOGY M. Liver segmentation using fast-generalized fuzzy C-means (FG-FCM) from CT scans[C]//Proceedings of the International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy. Piscataway: IEEE, 2020: 1-6. [70] RANJBARZADEH R, SAADI S B. Automated liver and tumor segmentation based on concave and convex points using fuzzy C-means and mean shift clustering[J]. Measurement, 2020, 150: 107086. [71] RELA M, NAGARAJA S, RAMANA P. Liver tumor segmentation using superpixel based fast fuzzy C means clustering[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(11): 230120927. [72] LI S, LI X. Fully incomplete information for multiview clustering in postoperative liver tumor diagnoses[J]. Sensors (Basel), 2025, 25(4): 1215. [73] KRISHAN A, MITTAL D. Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering[J]. Biomedizinische Technik, 2020, 65(3): 301-313. [74] 林家兴, 吕东澔. 基于区域生长与K-means聚类结合的肝脏肿瘤分割[J]. 电脑知识与技术, 2021, 17(26): 134-137. LIN J X, LYU D H. Segmentation of liver tumors based on regional growth combined with K-means clustering[J]. Computer Knowledge and Technology, 2021, 17(26): 134-137. [75] ANANTH C, AMUTHA S, NIHA K. Enhancing segmentation approaches from super pixel division algorithm to hidden Markov random fields with expectation maximization (HMRF-EM)[J]. International Journal of Early Childhood Special Education, 2022, 14(5): 2400-2410. [76] PATTWAKKAR V N, KAMATH S, KANABAGATTE NANJUNDAPPA M, et al. Automatic liver tumor segmentation on multiphase computed tomography volume using SegNet deep neural network and K-means clustering[J]. International Journal of Imaging Systems and Technology, 2023, 33(2): 729-745. [77] GUAN H, GUAN H, LIU M. Domain adaptation for medical image analysis: a survey[J]. IEEE Transactions on Biomedical Engineering , 2022, 69(3): 1173-1185. [78] JIANG K D, QUAN L, GONG T. Disentangled represen-tation and cross-modality image translation based unsupervised domain adaptation method for abdominal organ segmentation[J]. International Journal of Computer Assisted Radiology and Surgery, 2022, 17(6): 1101-1113. [79] XIE Q S, LI Y X, HE N J, et al. Unsupervised domain adaptation for medical image segmentation by disentanglement learning and self-training[J]. IEEE Transactions on Medical Imaging, 2024, 43(1): 4-14. [80] HONG J, ZHANG Y D, CHEN W T. Source-free unsupervised domain adaptation for cross-modality abdominal multi-organ segmentation[J]. Knowledge-Based Systems, 2022, 250: 109155. [81] OZKAN S, SELVER M A, BAYDAR B, et al. Cross-modal learning via adversarial loss and covariate shift for enhanced liver segmentation[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(4): 2723-2735. [82] 王淼, 黄智忠, 何晖光, 等. 分割一切模型SAM的潜力与展望: 综述[J]. 中国图象图形学报, 2024, 29(6): 1479-1509. WANG M, HUANG Z Z, HE H G, et al. Potential and prospects of segment anything model: a survey[J]. Journal of Image and Graphics, 2024, 29(6): 1479-1509. [83] RATHI N, CHAKRABORTY I, KOSTA A, et al. Exploring neuromorphic computing based on spiking neural networks: algorithms to hardware[J]. ACM Computing Surveys, 2023, 55(12): 1-49. [84] WEI L, LIU H W, XU J, et al. Quantum machine learning in medical image analysis: a survey[J]. Neurocomputing, 2023, 525: 42-53. |
| [1] | WANG Jing, LI Yunxia. Research on Stock Return Forecast by NS-FEDformer Model [J]. Computer Engineering and Applications, 2025, 61(9): 334-342. |
| [2] | LI Shuhui, CAI Wei, WANG Xin, GAO Weijie, DI Xingyu. Review of Infrared and Visible Image Fusion Methods in Deep Learning Frameworks [J]. Computer Engineering and Applications, 2025, 61(9): 25-40. |
| [3] | LUO Min, CAO Lu, LI Jiancheng, HE Xiquan, LIU Guangwu, WEN Jinyu, HUANG Xiuqing. Review of Research on Optic Disc and Optic Cup Segmentation in Deep Learning for Glaucoma Detection [J]. Computer Engineering and Applications, 2025, 61(9): 61-79. |
| [4] | CHEN Zhuo, LIU Dongqing, TANG Pinghua, HUANG Yan, ZHANG Wenxia, JIA Yan, CHENG Haifeng. Research Progress on Physical Adversarial Attacks for Target Detection [J]. Computer Engineering and Applications, 2025, 61(9): 80-101. |
| [5] | ZHOU Jiani, LIU Chunyu, LIU Jiapeng. Stock Price Trend Prediction Model Integrating Channel and Multi-Head Attention Mechanisms [J]. Computer Engineering and Applications, 2025, 61(8): 324-338. |
| [6] | ZHEN Tong, ZHANG Weizhen, LI Zhihui. Review of Classification Methods for Crop Structure in Remote Sensing Imagery [J]. Computer Engineering and Applications, 2025, 61(8): 35-48. |
| [7] | LI Tongwei, QIU Dawei, LIU Jing, LU Yinghang. Review of Human Behavior Recognition Based on RGB and Skeletal Data [J]. Computer Engineering and Applications, 2025, 61(8): 62-82. |
| [8] | WEN Hao, YANG Yang. Research on Clinical Short Text Classification by Integrating ERNIE with Knowledge Enhancement [J]. Computer Engineering and Applications, 2025, 61(8): 108-116. |
| [9] | WANG Yan, LU Pengyi, TA Xue. Normalized Convolutional Image Dehazing Network Combined with Feature Fusion Attention [J]. Computer Engineering and Applications, 2025, 61(8): 226-238. |
| [10] | XING Suxia, LI Kexian, FANG Junze, GUO Zheng, ZHAO Shihang. Survey of Medical Image Segmentation in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(7): 25-41. |
| [11] | CHEN Yu, QUAN Jichuan. Camouflaged Object Detection:Developments and Challenges [J]. Computer Engineering and Applications, 2025, 61(7): 42-60. |
| [12] | ZHAI Huiying, HAO Han, LI Junli, ZHAN Zhifeng. Review of Research on Unmanned Aerial Vehicle Autonomous Inspection Algorithms for Railway Facilities [J]. Computer Engineering and Applications, 2025, 61(7): 61-80. |
| [13] | DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision. DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision [J]. Computer Engineering and Applications, 2025, 61(7): 128-140. |
| [14] | SHI Xin, WANG Haoze, JI Yi, MA Junyan. Multimodal Vehicle Trajectory Prediction Method with Fusion of Spatio-Temporal Features [J]. Computer Engineering and Applications, 2025, 61(7): 325-333. |
| [15] | WANG Wenju, TANG Bang, GU Zehua, WANG Sen. Overview of Multi-View 3D Reconstruction Techniques in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(6): 22-35. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||