[1] 张阳婷, 黄德启, 王东伟, 等. 基于深度学习的目标检测算法研究与应用综述[J]. 计算机工程与应用, 2023, 59(18): 1-13.
ZHANG Y T, HUANG D Q, WANG D W, et al. Review on research and application of deep learning-based target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(18): 1-13.
[2] 赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629-654.
ZHAO Y Q, RAO Y, DONG S P, et al. Survey on deep learning object detection[J]. Journal of Image and Graphics, 2020, 25(4): 629-654.
[3] QU Z, GAO L Y, WANG S Y, et al. An improved YOLOv5 method for large objects detection with multi-scale feature cross-layer fusion network[J]. Image and Vision Computing, 2022, 125: 104518.
[4] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
[5] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[6] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[7] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[8] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[9] HU K, LU F Y, LU M X, et al. A marine object detection algorithm based on SSD and feature enhancement[J]. Complexity, 2020, 2020(1): 5476142.
[10] CHEN L, LIU Z H, TONG L, et al. Underwater object dete-ction using invert multi-class Adaboost with deep learning[C]//Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8.
[11] QI S H, DU J J, WU M Y, et al. Underwater small target dete-ction based on deformable convolutional pyramid[C]//Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 2784-2788.
[12] ZHANG M H, XU S B, SONG W, et al. Lightweight underwater object detection based on YOLOv4 and multi-scale attentional feature fusion[J]. Remote Sensing, 2021, 13(22): 4706.
[13] ZHOU J C, HE Z X, LAM K M, et al. AMSP-UOD: when vortex convolution and stochastic perturbation meet underwater object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 7659-7667.
[14] 陶洋, 朱腾, 钟邦乾, 等. RepViTS-YOLOX: 水下模糊及遮挡目标检测方法[J]. 计算机工程与应用, 2024, 60(13): 200-208.
TAO Y, ZHU T, ZHONG B Q, et al. RepViTS-YOLOX: underwater blurred and occluded target detection method[J]. Computer Engineering and Applications, 2024, 60(13): 200-208.
[15] 钱晓琪, 刘伟峰, 张敬, 等. 面向水下图像目标检测的退化特征增强算法[J]. 中国图象图形学报, 2022, 27(11): 3185-3198.
QIAN X Q, LIU W F, ZHANG J, et al. Underwater-relevant image object detection based feature-degraded enhancement method[J]. Journal of Image and Graphics, 2022, 27(11): 3185-3198.
[16] FU C P, FAN X, XIAO J W, et al. Learning heavily-degraded prior for underwater object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6887-6896.
[17] KATAYAMA T, SONG T, SHIMAMOTO T, et al. GAN-based color correction for underwater object detection[C]//Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE. Piscataway: IEEE, 2019: 1-4.
[18] GUO T, WEI Y, SHAO H, et al. Research on underwater target detection method based on improved MSRCP and YOLOv3[C]//Proceedings of the 2021 IEEE International Conference on Mechatronics and Automation (ICMA). Piscataway: IEEE, 2021: 1158-1163.
[19] XU S B, ZHANG M H, SONG W, et al. A systematic review and analysis of deep learning-based underwater object dete-ction[J]. Neurocomputing, 2023, 527: 204-232.
[20] ZHANG M H, XU S B, SONG W, et al. Lightweight underwater object detection based on YOLOv4 and multi-scale attentional feature fusion[J]. Remote Sensing, 2021, 13(22): 4706.
[21] HE J J, WANG Y C, WANG Y T, et al. A lightweight road crack detection algorithm based on improved YOLOv7 model[J]. Signal, Image and Video Processing, 2024, 18(1): 847-860.
[22] WANG S, XIA C L, LV F, et al. RT-DETRv3: real-time end-to-end object detection with hierarchical dense positive supervision[J]. arXiv:2409.08475, 2024.
[23] ISLAM M A, JIA S, BRUCE N D B. How much position information do convolutional neural networks encode? [J]. arXiv: 2001.08248, 2020.
[24] PAN Z, CAI J, ZHUANG B. Fast vision transformers with hilo attention[C]//Advances in Neural Information Processing Systems, 2022: 14541-14554.
[25] CHEN Y F, ZHANG C Y, CHEN B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in Biology and Medicine, 2024, 170: 107917.
[26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[27] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[28] LIU C W, LI H J, WANG S C, et al. A dataset and benchmark of underwater object detection for robot picking[C]//Proceedings of the 2021 IEEE International Conference on Multimedia & Expo Workshops. Piscataway: IEEE, 2021: 1-6.
[29] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[30] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[EB/OL]. [2025-01-05]. https://arXiv.org/abs/1904.01355.
[31] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[32] JOCHER G. YOLOv5 in PyTorch [EB/OL]. [2025-01-05]. https://github.com/ultralytics/yolov5.
[33] JOCHER G. Ultralytics/YOLOv8 in PyTorch [EB/OL]. [2025-01-05]. https://github.com/ultralytics/ultralytics.
[34] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2025-01-05]. https://arXiv.org/abs/2107.08430.
[35] JOCHER G. Ultralytics/YOLOv11 in PyTorch [EB/OL]. [2025-01-05]. https://github.com/ultralytics/ultralytics.
[36] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: To-wards real-time object detection with region proposal net-works[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[37] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
[38] LU X, LI B, YUE Y, et al. Grid R-CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7363-7372.
[39] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: defo-rmable transformers for end-to-end object detection[J]. arXiv:2010.04159, 2020.
[40] MENG D P, CHEN X K, FAN Z J, et al. Conditional DETR for fast training convergence[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3631-3640.
[41] LIU S L, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[J]. arXiv:2201. 12329, 2022.
[42] ZHANG H, LI F, LIU S L, et al. DINO: detr with improved DeNoising anchor boxes for end-to-end object detection[J]. arXiv:2203.03605, 2022.
[43] HUANG S H, LU Z C, CUN X D, et al. DEIM: detr with improved matching for fast convergence[J]. arXiv:2412.04234, 2024.
[44] BOLYA D, FOLEY S, HAYS J, et al. TIDE: a general toolbox for identifying object detection errors[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 558-573.
[45] WANG C C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[J]. arXiv: 2309.11331, 2023.
[46] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[47] PEDERSEN M, BRUSLUND HAURUM J, GADE R, et al. Detection of marine animals in a new underwater dataset with varying visibility[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019: 18-26. |