Computer Engineering and Applications ›› 2020, Vol. 56 ›› Issue (2): 242-247.DOI: 10.3778/j.issn.1002-8331.1810-0037

Previous Articles     Next Articles

Improved Fruit Fly Optimization Based Hysteresis Bouc-Wen Model Identification of Piezoelectric Precision Positioning Stages

WANG Longfei, DENG Liang, LIU Ping   

  1. College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • Online:2020-01-15 Published:2020-01-14



  1. 上海电力大学 自动化工程学院,上海 200090

Abstract: An Improved Fruit fly Optimization Algorithm(IFOA) based Bouc-Wen identification method is proposed to describe hysteresis characteristic of a piezoelectric precision positioning stage. The IFOA with introduction of cross factors and an adaptive search step size can effectively attain the dynamic balance between global search and local optimization and improve search efficiency and optimization precision as a whole via a new search strategy. Subsequently, the IFOA is employed to parameter identifications of the Bouc-Wen models for describing a piezoelectric precision positioning stage. Experimental identification results have verified the effectiveness and potential of the IFOA.

Key words: hysteresis, fruit fly optimization algorithm, Bouc-Wen, piezoelectric precision positioning stage, identification

摘要: 提出一种基于改进果蝇优化算法(Improved Fruit fly Optimization Algorithm,IFOA)的压电精密定位平台迟滞特性的Bouc-Wen模型参数辨识方法。通过引入交叉因子和自适应搜索步长,IFOA可有效实现全局搜索与局部优化的动态平衡,并通过一种新的搜索策略提高整体搜索效率和优化精度。将IFOA应用于压电精密定位平台迟滞Bouc-Wen模型的参数辨识。实验辨识结果验证了该方法的有效性和潜力。

关键词: 迟滞, 果蝇优化算法, Bouc-Wen, 压电精密定位平台, 辨识