Computer Engineering and Applications ›› 2016, Vol. 52 ›› Issue (18): 84-87.

Previous Articles     Next Articles

Semi-naive Bayesian classifier matched by mutual information

ZHAO Liang1, LIU Jianhui2, CUI Caifeng2   

  1. 1.Institute of Graduate, Liaoning Technical University, Fuxin, Liaoning 123000, China
    2.School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125000, China
  • Online:2016-09-15 Published:2016-09-14

互信息匹配的半朴素贝叶斯分类器

赵  亮1,刘建辉2,崔彩峰2   

  1. 1.辽宁工程技术大学 研究生院,辽宁 阜新 123000
    2.辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125000

Abstract: Because the class-conditional independence assumption which is the mainly feature of Naive Bayesian classifier is a so strong assumption and difference appears between datasets, the class-conditional independence assumption becomes the entry point of improvement methods. But some researches indicate that the violations of independence assumption do not make so much influence to the classifier as expected. This paper proposes a conditional entropy matching half-naive Bayesian classifier for the purpose of lower posterior probability estimation error. Experiments show that this method can effectively improve the performance of naive Bayesian classifier.

Key words: semi-naive Bayesian classifier, mutual information, matching

摘要: 由于作为朴素贝叶斯分类器的主要特征的条件独立性假设条件过强且在不同数据集上表现出的差异,所以独立性假设成为众多改进算法的切入点。但也有研究指出不满足该假设并没有对分类器造成预想的影响。从降低后验概率的估计误差入手提出一种条件熵匹配的半朴素贝叶斯分类器。实验证明,该方法能有效提高朴素贝叶斯分类器的性能。

关键词: 半朴素贝叶斯分类器, 互信息, 匹配