
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (18): 132-141.DOI: 10.3778/j.issn.1002-8331.2406-0146
• Pattern Recognition and Artificial Intelligence • Previous Articles Next Articles
XIAN Shiyang, LI Zongmin, GONG Xuchao, XU Chang, ZHANG Peng, WANG Wenchao, BAI Yun, RONG Guangcai
Online:2025-09-15
Published:2025-09-15
鲜世洋,李宗民,公绪超,徐畅,张鹏,王文超,白云,戎光彩
XIAN Shiyang, LI Zongmin, GONG Xuchao, XU Chang, ZHANG Peng, WANG Wenchao, BAI Yun, RONG Guangcai. Point Cloud 3D Object Detection Method with Global Shape Relation Constraints[J]. Computer Engineering and Applications, 2025, 61(18): 132-141.
鲜世洋, 李宗民, 公绪超, 徐畅, 张鹏, 王文超, 白云, 戎光彩. 全局形状关系约束的点云三维目标检测方法[J]. 计算机工程与应用, 2025, 61(18): 132-141.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2406-0146
| [1] QI C R, LIU W, WU C X, et al. Frustum PointNets for 3D object detection from RGB-D data[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 918-927. [2] MARCHAND E, UCHIYAMA H, SPINDLER F. Pose estimation for augmented reality: a hands-on survey[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(12): 2633-2651. [3] SONG S R, XIAO J X. Deep sliding shapes for amodal 3D object detection in RGB-D images[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 808-816. [4] YANG B, LUO W, URTASUN R. Pixor: real-time 3D object detection from point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7652-7660. [5] MISRA I, GIRDHAR R, JOULIN A. An end-to-end transformer model for 3D object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2886-2897. [6] QI C R, LITANY O, HE K M, et al. Deep Hough voting for 3D object detection in point clouds[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9276-9285. [7] CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. [8] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, 2017. [9] XIE Q, LAI Y K, WU J, et al. VENet: voting enhancement network for 3D object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3692-3701. [10] YANG D H, GAO W, LI G, et al. Exploiting manifold feature representation for efficient classification of 3D point clouds[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(1s): 1-21. [11] MEIL? M, ZHANG H Y. Manifold learning: what, how, and why[J]. Annual Review of Statistics and Its Application, 2024, 11: 393-417. [12] LIU Y C, FAN B, XIANG S M, et al. Relation-shape convolutional neural network for point cloud analysis[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8887-8896. [13] 张冬冬, 郭杰, 陈阳. 基于原始点云的三维目标检测算法[J]. 计算机工程与应用, 2023, 59(3): 209-217. ZHANG D D, GUO J, CHEN Y. 3D object detection algorithm based on raw point clouds[J]. Computer Engineering and Applications, 2023, 59(3): 209-217. [14] DENG J J, SHI S S, LI P W, et al. Voxel R-CNN: towards high performance voxel-based 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 1201-1209. [15] ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4490-4499. [16] GWAK J, CHOY C, SAVARESE S. Generative sparse detection networks for 3D single-shot object detection[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 297-313. [17] ZHANG Z W, SUN B, YANG H T, et al. H3DNet: 3D object detection using hybrid geometric primitives[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 311-329. [18] XIE Q, LAI Y K, WU J, et al. MLCVNet: multi-level context VoteNet for 3D object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10444-10453. [19] SHI S S, WANG X G, LI H S. PointRCNN: 3D object proposal generation and detection from point cloud[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 770-779. [20] CHEN J T, LEI B W, SONG Q Y, et al. A hierarchical graph network for 3D object detection on point clouds[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 389-398. [21] YANG Y Q, FENG C, SHEN Y R, et al. FoldingNet: point cloud auto?encoder via deep grid deformation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 206-215. [22] YANG Z T, SUN Y N, LIU S, et al. 3DSSD: point-based 3D single stage object detector[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11037-11045. [23] ZHU Y, HUI L, SHEN Y Q, et al. SPGroup3D: superpoint grouping network for indoor 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 7811-7819. [24] CHEN Y J, XU F, CHEN G D, et al. Point cloud 3D object detection method based on density information?local feature fusion[J]. Multimedia Tools and Applications, 2024, 83(1): 2407-2425. [25] SHU J, YU S Q, SHU X Y, et al. SOA: seed point offset attention for indoor 3D object detection in point clouds[J]. Computers & Graphics, 2024, 123: 103992. [26] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017. [27] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [28] BELLO I, ZOPH B, LE Q, et al. Attention augmented convolutional networks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3285-3294. [29] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]///Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 213-229. [30] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12. [31] YAN X, ZHENG C D, LI Z, et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5588-5597. [32] FENG M T, GILANI S Z, WANG Y N, et al. Relation graph network for 3D object detection in point clouds[J]. IEEE Transactions on Image Processing, 2020, 30: 92-107. [33] WANG Y, SOLOMON J M. Object DGCNN: 3D object detection using dynamic graphs[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2021: 20745-20758. [34] DONG S W, KONG X Y, PAN X J, et al. Semantic-context graph network for point-based 3D object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6474-6486. [35] ZHAO L C, GUO J Y, XU D, et al. Transformer3D-det: improving 3D object detection by vote refinement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(12): 4735-4746. [36] SAUL L K, ROWEIS S T. An introduction to locally linear embedding[J]. Journal of Machine Learning Research, 2000. [37] DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2432-2443. [38] SONG S R, LICHTENBERG S P, XIAO J X. SUN RGB-D: a RGB-D scene understanding benchmark suite[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 567-576. [39] REN Z L, SUDDERTH E B. Three-dimensional object detection and layout prediction using clouds of oriented gradients[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1525-1533. [40] LAHOUD J, GHANEM B. 2D-driven 3D object detection in RGB-D images[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4632-4640. [41] DUAN Y, ZHU C Y, LAN Y Q, et al. DisARM: displacement aware relation module for 3D detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16959-16968. [42] LI Z C, YU H S, YANG Z G, et al. AShapeFormer: semantics-guided object-level active shape encoding for 3D object detection via transformers[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 1012-1021. [43] YI L, ZHAO W, WANG H, et al. GSPN: generative shape proposal network for 3D instance segmentation in point cloud[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3942-3951. [44] HOU J, DAI A, NIE?NER M. 3D-SIS: 3D semantic instance segmentation of RGB-D scans[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4416-4425. [45] QI C R, CHEN X L, LITANY O, et al. ImVoteNet: boosting 3D object detection in point clouds with image votes[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4403-4412. |
| [1] | PENG Xiaohong, DENG Feng, YU Yinghuai. Construction of Chinese Named Entity Recognition Dataset in Penaeus Vannamei Farming Field [J]. Computer Engineering and Applications, 2025, 61(9): 353-362. |
| [2] | XIANG Yiwei, JIANG Yu, WANG Qikai, LUO Rongrong. Research on Real-Time Transformer for Multi-Scale Feature Optimization in Drone Aerial Imaging [J]. Computer Engineering and Applications, 2025, 61(9): 221-229. |
| [3] | LUO Yuxuan, WU Gaochang, GAO Ming. Remote Sensing Image Super-Resolution Network with Adaptive Convolution and Lightweight Transformer [J]. Computer Engineering and Applications, 2025, 61(9): 263-276. |
| [4] | CUI Liqun, HAO Siya, LUAN Wuyang. Lightweight 3D Point Cloud Instance Segmentation Algorithm Based on Mamba [J]. Computer Engineering and Applications, 2025, 61(8): 194-203. |
| [5] | TIAN Yuan, ZHAO Mingfu, SONG Tao, XIONG Hailong, YE Dingxing, WANG Min. Global-Local Feature Aggregation for Real Point Cloud Semantic Segmentation [J]. Computer Engineering and Applications, 2025, 61(8): 260-266. |
| [6] | XING Suxia, LI Kexian, FANG Junze, GUO Zheng, ZHAO Shihang. Survey of Medical Image Segmentation in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(7): 25-41. |
| [7] | LU Min, HU Zhenyu. 3D Object Detection Method for Cooperative Vehicle Sensing Under Communication Delay [J]. Computer Engineering and Applications, 2025, 61(7): 278-287. |
| [8] | BAI Xuebing, CHE Jin, WU Jinman. Image Captioning Algorithm for Multi-Scale Features Fusion [J]. Computer Engineering and Applications, 2025, 61(7): 288-296. |
| [9] | WU Meng, YAN Ruiqi, SUN Zengguo, ZHAO Huaidong, HE Qianping. 3D Point Cloud Dual Completion Network [J]. Computer Engineering and Applications, 2025, 61(7): 297-305. |
| [10] | GONG Xiaomei, ZHANG Yi, HU Shu. Target Tracking Algorithm with Feature Fusion and Transformer Based Model Predictor [J]. Computer Engineering and Applications, 2025, 61(6): 254-262. |
| [11] | DU Xiaogang, LU Wenjie, LEI Tao, WANG Yingbo. Low-Light Image Enhancement Using Brightness and Signal-to-Noise Ratio Guided Transformer [J]. Computer Engineering and Applications, 2025, 61(6): 263-272. |
| [12] | LI Xin, ZHANG Dan, GUO Xin, WANG Song, CHEN Enqing. Human Pose Estimation Based on Dual-Stream Fusion of CNN and Transformer [J]. Computer Engineering and Applications, 2025, 61(5): 187-199. |
| [13] | HUANG Shan, FAN Huijie, LIN Sen, CAO Jinghan, TANG Yandong. Feature Dynamic Library Based on Diffusion Method [J]. Computer Engineering and Applications, 2025, 61(5): 241-249. |
| [14] | JIN Jiali, YU Lu. Continual Image Captioning with Dynamic Token-Used Fusion Feature [J]. Computer Engineering and Applications, 2025, 61(4): 176-191. |
| [15] | WANG Weihang, ZHANG Yi. MLDAC:Multi-Task Dense Attention Computation Self-Supervised Few-Shot Semantic Segmentation Method [J]. Computer Engineering and Applications, 2025, 61(4): 211-221. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||