[1] RAJAPAKSHA S, KALUTARAGE H, AL-KADRI M O, et al. Beyond vanilla: improved autoencoder-based ensemble in-vehicle intrusion detection system[J]. Journal of Information Security and Applications, 2023, 77: 103570.
[2] MANSOURIAN P, ZHANG N, JAEKEL A, et al. Deep learning-based anomaly detection for connected autonomous vehicles using spatiotemporal information[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 16006-16017.
[3] 罗峰, 胡强, 侯硕, 等. 基于支持向量机的CAN-FD网络异常入侵检测[J]. 同济大学学报 (自然科学版), 2020, 48(12): 1790-1796.
LUO F, HU Q, HOU S, et al. Anomaly intrusion detection for CAN-FD bus by support vector machine[J]. Journal of Tongji University (Natural Science), 2020, 48(12): 1790-1796.
[4] 关宇昕, 冀浩杰, 崔哲, 等. 智能网联汽车车载CAN网络入侵检测方法综述[J]. 汽车工程, 2023, 45(6): 922-935.
GUAN Y X, JI H J, CUI Z, et al. An overview of intrusion detection methods for in-vehicle CAN network of intelligent networked vehicles[J]. Automotive Engineering, 2023, 45(6): 922-935.
[5] ABU ELKHAIL A, REFAT R U D, HABRE R, et al. Vehicle security: a survey of security issues and vulnerabilities, malware attacks and defenses[J]. IEEE Access, 2021, 9: 162401-162437.
[6] BOZDAL M, SAMIE M, JENNIONS I. A survey on CAN bus protocol: attacks, challenges, and potential solutions[C]//Proceedings of the 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE). Piscataway: IEEE, 2018: 201-205.
[7] MUTTER A, BOSCH R P, HARTWICH F. Advantages of CAN FD Error detection mechanisms compared to Classical CAN[J]. CAN in Automation iCC, 2015 : 57991424.
[8] WOO S, JO H J, KIM I S, et al. A practical security architecture for in-vehicle CAN-FD[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8): 2248-2261.
[9] 房杰. CAN-FD总线网络的入侵检测与容错控制研究[D]. 延吉: 延边大学, 2022.
FANG J. Intrusion detection and fault-tolerant control of CAN-FD bus networks[D]. Yanji: Yanbian University, 2022.
[10] 罗峰, 胡强, 刘宇. 基于CAN-FD总线的车载网络安全通信[J]. 同济大学学报 (自然科学版), 2019, 47(3): 386-391.
LUO F, HU Q, LIU Y. Secure communication method for in-vehicle network based on CAN-FD bus[J]. Journal of Tongji University (Natural Science), 2019, 47(3): 386-391.
[11] 余奇. 车载CAN FD通信数据加密方法的研究[D]. 重庆: 重庆邮电大学, 2018.
YU Q. Research on in-vehicle CAN FD communication data encryption method[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2018.
[12] DE ANDRADE R, SANTOS M M D, JUSTO J F, et al. Security architecture for automotive communication networks with CAN FD[J]. Computers & Security, 2023, 129: 103203.
[13] ZHAO R, LUO C, GAO F, et al. Application-layer anomaly detection leveraging time-series physical semantics in CAN-FD vehicle networks[J]. Electronics, 2024, 13(2): 377.
[14] RAJAPAKSHA S, KALUTARAGE H, MADZUDZO G, et al. CAN-MIRGU: a comprehensive CAN bus attack dataset from moving vehicles for intrusion detection system evaluation[C]//Proceedings Symposium on Vehicle Security & Privacy, 2024.
[15] Hacking and Countermeasure Research Lab(HCRL). CAN-FD intrusion dataset[EB/OL]. [2024?05?17].https://ocslab.hksecurity.net/Datasets/can-fd-intrusion-dataset.
[16] MITCHELL R, CHEN I R. A survey of intrusion detection techniques for cyber-physical systems[J]. ACM Computing Surveys, 2014, 46(4): 1-29.
[17] TIAN M Q, JIANG R B, XING C Q, et al. Exploiting temperature-varied ECU fingerprints for source identification in in-vehicle network intrusion detection[C]//Proceedings of the 2019 IEEE 38th International Performance Computing and Communications Conference. Piscataway: IEEE, 2019: 1-8.
[18] SHARMIN S, MANSOR H, KADIR A F A, et al. Benchmarking frameworks and comparative studies of controller area network (CAN) intrusion detection systems: a review[J]. arXiv:2402.06904, 2024.
[19] 毛智超, 吴黎兵, 马亚军, 等. 基于DBN与带注意力机制GRU的CAN总线入侵检测模型[J]. 武汉大学学报 (理学版), 2023, 69(5): 598-608.
MAO Z C, WU L B, MA Y J, et al. Intrusion detection model for CAN bus using DBN and attention-based GRU[J]. Journal of Wuhan University (Natural Science Edition), 2023, 69(5): 598-608.
[20] LEVI M, ALLOUCHE Y, KONTOROVICH A. Advanced analytics for connected car cybersecurity[C]//Proceedings of the 2018 IEEE 87th Vehicular Technology Conference. Piscataway: IEEE, 2018: 1-7.
[21] ALFARDUS A, RAWAT D B. Intrusion detection system for CAN bus in-vehicle network based on machine learning algorithms[C]//Proceedings of the 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference. Piscataway: IEEE, 2021: 944-949.
[22] DESTA A K, OHIRA S, ARAI I, et al. Rec-CNN: in-vehicle networks intrusion detection using convolutional neural networks trained on recurrence plots[J]. Vehicular Communications, 2022, 35: 100470.
[23] DING D F, ZHU L, XIE J Y, et al. In-vehicle network intrusion detection system based on Bi-LSTM[C]//Proceedings of the 2022 7th International Conference on Intelligent Computing and Signal Processing. Piscataway: IEEE, 2022: 580-583.
[24] NAVYA V K, ADITHI J, RUDRAWAL D, et al. Intrusion detection system using deep neural networks (DNN)[C]//Proceedings of the 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation. Piscataway: IEEE, 2021: 1-6.
[25] XIE G Q, YANG L T, YANG Y D, et al. Threat analysis for automotive CAN networks: a GAN model-based intrusion detection technique[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4467-4477.
[26] VASWANI A. Attention is all you need[J]. arXiv:1706. 03762, 2017.
[27] 黄海彬, 万良, 褚堃. 基于Transformer的入侵检测方法研究[J]. 软件导刊, 2022, 21(9): 121-128.
HUANG H B, WAN L, CHU K. Research on intrusion detection method based on transformer[J]. Software Guide, 2022, 21(9): 121-128.
[28] WEN Q, ZHOU T, ZHANG C, et al. Transformers in time series: a survey[J]. arXiv:2202.07125, 2022.
[29] LO W, ALQAHTANI H, THAKUR K, et al. A hybrid deep learning based intrusion detection system using spatial-temporal representation of in-vehicle network traffic[J]. Vehicular Communications, 2022, 35: 100471.
[30] SUN H, CHEN M M, WENG J, et al. Anomaly detection for in-vehicle network using CNN-LSTM with attention mechanism[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10880-10893. |