[1] HASSAN S A, RAHIM T, SHIN S Y. An improved deep convolutional neural network-based autonomous road inspection scheme using unmanned aerial vehicles[J]. Electronics, 2021, 10(22): 2764.
[2] 赵建宏, 徐宝坤, 王宝鑫, 等. 基于无人机的交通监控研究现状与展望[J]. 计算机产品与流通, 2017(9): 125.
ZHAO J H, XU B K, WANG B X, et al. Research status and prospect of traffic monitoring based on UAV[J]. Computer Products and Circulation, 2017(9): 125.
[3] 黄镓辉, 彭力, 谢林柏. 无人机场景下尺度自适应的车辆跟踪算法[J]. 计算机科学与探索, 2021, 15(7): 1302-1309.
HUANG J H, PENG L, XIE L B. Scale-adaptive vehicle tracking algorithm in UAV scene[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1302-1309.
[4] 王博, 宋丹, 王洪玉. 无人机自主巡检系统的关键技术研究[J]. 计算机工程与应用, 2021, 57(9): 255-263.
WANG B, SONG D, WANG H Y. Research on key technologies of UAV autonomous inspection system[J]. Computer Engineering and Applications, 2021, 57(9): 255-263.
[5] FAKHRURROJA H, PRAMESTI D, HIDAYATULLAH A R, et al. Automated license plate detection and recognition using YOLOv8 and OCR with tello drone camera[C]//Proceedings of the 2023 International Conference on Computer, Control, Informatics and its Applications. Piscataway: IEEE, 2023: 206-211.
[6] SHI H L, ZHAO D N. License plate recognition system based on improved YOLOv5 and GRU[J]. IEEE Access, 2023, 11: 10429-10439.
[7] LEE J H, GWON G H, KIM I H, et al. A motion deblurring network for enhancing UAV image quality in bridge inspection[J]. Drones, 2023, 7(11): 657.
[8] XU Z B, YANG W, MENG A J, et al. Towards end-to-end license plate detection and recognition: a large dataset and baseline[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 261-277.
[9] GONG Y X, DENG L J, TAO S, et al. Unified Chinese license plate detection and recognition with high efficiency[J]. Journal of Visual Communication and Image Representation, 2022, 86: 103541.
[10] CHEN C L P, WANG B S. Random-positioned license plate recognition using hybrid broad learning system and convolutional networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 444-456.
[11] 肖建, 梁定康, 徐威, 等. 一种基于无人机的违章违停自主巡检系统[J]. 计算机技术与发展, 2019, 29(12): 153-157.
XIAO J, LIANG D K, XU W, et al. A self-inspection violation system based on UAV[J]. Computer Technology and Development, 2019, 29(12): 153-157.
[12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[14] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[15] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[16] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[17] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239.
[18] 张世豪, 杨绣郡, 吴林煌, 等. 轻量型多尺度注意力融合的车牌检测算法[J]. 计算机工程与应用, 2021, 57(22): 208-214.
ZHANG S H, YANG X J, WU L H, et al. Lightweight multi-scale attention fusion algorithm for license plate detection[J]. Computer Engineering and Applications, 2021, 57(22): 208-214.
[19] 李垠汛. 基于无人机视角的车牌识别技术研究与实现[D]. 银川: 宁夏大学, 2022.
LI Y X. Research and implementation of license plate recognition technology based on UAV perspective[D]. Yinchuan: Ning-xia University, 2022.
[20] SHASHIRANGANA J, PADMASIRI H, MEEDENIYA D, et al. Automated license plate recognition: a survey on methods and techniques[J]. IEEE Access, 2020, 9: 11203-11225.
[21] 曾荻清. 视觉无人机高速公路违章识别技术的研究及实现[D]. 南京: 南京邮电大学, 2020.
ZENG D Q. Research and implementation of highway violation identification technology based on vision drone[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
[22] KUNDROTAS M, JANUT?NAIT?-BOGDANIEN? J, ?E?OK D. Two-step algorithm for license plate identification using deep neural networks[J]. Applied Sciences, 2023, 13(8): 4902.
[23] EL-SHAL I H, FAHMY O M, ELATTAR M A. License plate image analysis empowered by generative adversarial neural networks (GANs)[J]. IEEE Access, 2022, 10: 30846-30857.
[24] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[25] ZHANG D X, TANG N, QU Y Y. Joint motion deblurring and super-resolution for single image using diffusion model and GAN[J]. IEEE Signal Processing Letters, 2024, 31: 736-740.
[26] WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365-3387.
[27] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[28] PAN X Y, JIA N X, MU Y Z, et al. MSFE-PANet: improved YOLOv4-based small object detection method in complex scenes[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2023, 37(10): 2350024.
[29] 徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792.
XU G X, FENG C, MA F. Review of medical image segmentation based on UNet[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792.
[30] 王燕, 南佩奇. MFFNet: 多级特征融合图像语义分割网络[J]. 计算机科学与探索, 2024, 18(3): 707-717.
WANG Y, NAN P Q. MFFNet: image semantic segmentation network of multi-level feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 707-717.
[31] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114.
[32] WANG X T, YU K, WU S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision Workshops. Cham: Springer, 2019: 63-79.
[33] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 694-711.
[34] ZHERZDEV S, GRUZDEV A. LPRNet: license plate recognition via deep neural networks[J]. arXiv:1806.10447, 2018. |