摘要点击排行

    一年内发表文章 |  两年内 |  三年内 |  全部

    当前位置: 三年内
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 多模态深度学习综述
    孙影影,贾振堂,朱昊宇
    计算机工程与应用    2020, 56 (21): 1-10.   DOI: 10.3778/j.issn.1002-8331.2002-0342
    摘要1368)      PDF(pc) (769KB)(907)    收藏

    模态是指人接收信息的方式,包括听觉、视觉、嗅觉、触觉等多种方式。多模态学习是指通过利用多模态之间的互补性,剔除模态间的冗余性,从而学习到更好的特征表示。多模态学习的目的是建立能够处理和关联来自多种模式信息的模型,它是一个充满活力的多学科领域,具有日益重要和巨大的潜力。目前比较热门的研究方向是图像、视频、音频、文本之间的多模态学习。着重介绍了多模态在视听语音识别、图文情感分析、协同标注等实际层面的应用,以及在匹配和分类、对齐表示学习等核心层面的应用,并针对多模态学习的核心问题:匹配和分类、对齐表示学习方面给出了说明。对多模态学习中常用的数据集进行了介绍,并展望了未来多模态学习的发展趋势。

    相关文章 | 多维度评价
    2. 若干新型群智能优化算法的对比研究
    李雅丽,王淑琴,陈倩茹,王小钢
    计算机工程与应用    2020, 56 (22): 1-12.   DOI: 10.3778/j.issn.1002-8331.2006-0291
    摘要1302)      PDF(pc) (972KB)(640)    收藏

    随着计算机技术的发展,算法技术也在不断交替更新。近年来,群体智能算法受到了广泛的关注和研究,并在诸如机器学习、过程控制、工程预测等领域取得了进展。群智能优化算法属于生物启发式方法,广泛应用在解决最优化问题上,传统的群智能算法为解决一些实际问题提供了新思路,但是也在一些实验中暴露出不足。近年来,许多学者相继提出了很多新型群智能优化算法,选取了最近几年国内外提出的比较典型的群智能算法,蝙蝠算法(Bat Algorithm,BA)、灰狼优化算法(Grey Wolf Optimization,GWO)、蜻蜓算法(Dragonfly Algorithm,DA)、鲸鱼优化算法(Whale Optimization Algorithm,WOA)、蝗虫优化算法(Grasshopper Optimization Algorithm,GOA)和麻雀搜索算法(Sparrow Search Algorithm,SSA),并进一步通过22个标准的CEC测试函数从收敛速度、精度和稳定性等方面对比了这些算法的实验性能,并对比分析了其相关的改进方法。最后总结了群智能优化算法的特点,探讨了其今后的发展潜力。

    相关文章 | 多维度评价
    3. 基于深度学习的数据融合方法研究综述
    张红,程传祺,徐志刚,李建华
    计算机工程与应用    2020, 56 (24): 1-11.   DOI: 10.3778/j.issn.1002-8331.2007-0475
    摘要1233)      PDF(pc) (683KB)(1373)    收藏

    数据融合是最大程度发挥大数据价值的关键,深度学习是挖掘数据深层特征信息的技术利器,基于深度学习的数据融合能够充分挖掘大数据潜在价值,从新的深度和广度拓展对世界的探索和认识。综述了近几年基于深度学习的数据融合方法的相关文献,以此了解深度学习在数据融合中应用所具有的优势。分类阐述常见的数据融合方法,同时指出这些方法的优点和不足。从基于深度学习特征提取的数据融合方法、基于深度学习融合的数据融合方法、基于深度学习全过程的数据融合方法三个方面对基于深度学习的数据融合方法进行分析,并做了对比研究与总结。总结全文并讨论了深度学习在数据融合中应用的难点和未来需要进一步研究的问题。

    相关文章 | 多维度评价
    4. 改进CBAM的轻量级注意力模型
    付国栋,黄进,杨涛,郑思宇
    计算机工程与应用    2021, 57 (20): 150-156.   DOI: 10.3778/j.issn.1002-8331.2101-0369
    摘要1225)      PDF(pc) (808KB)(433)    收藏

    近几年注意力模型在计算机视觉领域取得了广泛的应用,通过在卷积神经网络中加入注意力模型,网络的性能可以显著提升。然而大多数现有的方法都专注于开发更复杂的注意力模型,以使卷积神经网络获得更强的特征表达能力,但这也不可避免地增加了模型的复杂性。为了在性能和复杂度间取得平衡,对CBAM模型进行优化提出了轻量级的EAM(Efficient Attention Module)模型。针对CBAM的通道注意力模块,引入一维卷积替代全连接层来聚合各通道间的信息;对于CBAM的空间注意力模块,将大卷积核替换为空洞卷积来增加感受野以聚合更广的空间上下文信息。将该模型融入YOLOv4后在VOC2012数据集上进行测试,mAP提高3.48个百分点。实验结果表明,该注意力模型只引入较小的参数量,网络性能可获得较大提升。

    参考文献 | 相关文章 | 多维度评价
    5. 基于深度学习的网络流量预测研究综述
    康梦轩,宋俊平,范鹏飞,高博文,周旭,李琢
    计算机工程与应用    2021, 57 (10): 1-9.   DOI: 10.3778/j.issn.1002-8331.2101-0402
    摘要1198)      PDF(pc) (711KB)(1002)    收藏

    精准地预判网络流量变化趋势可以帮助运营商准确预估网络的使用情况,合理分配并高效利用网络资源,以满足日益增长且多样化的用户需求。以深度学习算法在网络流量预测领域的进展为线索,阐述了网络流量预测的评价指标和目前公开的网络流量数据集及应用,具体分析了网络流量预测中常用的深度信念网络、卷积神经网络、循环神经网络和长短时记忆网络共四种深度学习方法,并重点介绍了近年来针对不同问题所提出的改进神经网络模型,总结了各模型特点及应用场景。最后对网络流量预测未来发展进行了展望。

    相关文章 | 多维度评价
    6. 深度强化学习及在路径规划中的研究进展
    张荣霞,武长旭,孙同超,赵增顺
    计算机工程与应用    2021, 57 (19): 44-56.   DOI: 10.3778/j.issn.1002-8331.2104-0369
    摘要1197)      PDF(pc) (1134KB)(557)    收藏

    路径规划的目的是让机器人在移动过程中既能避开障碍物,又能快速规划出最短路径。在分析基于强化学习的路径规划算法优缺点的基础上,引出能够在复杂动态环境下进行良好路径规划的典型深度强化学习DQN(Deep Q-learning Network)算法。深入分析了DQN算法的基本原理和局限性,对比了各种DQN变种算法的优势和不足,进而从训练算法、神经网络结构、学习机制、AC(Actor-Critic)框架的多种变形四方面进行了分类归纳。提出了目前基于深度强化学习的路径规划方法所面临的挑战和亟待解决的问题,并展望了未来的发展方向,可为机器人智能路径规划及自动驾驶等方向的发展提供参考。

    参考文献 | 相关文章 | 多维度评价
    7. 基于深度学习的小目标检测算法综述
    刘洋,战荫伟
    计算机工程与应用    2021, 57 (2): 37-48.   DOI: 10.3778/j.issn.1002-8331.2009-0047
    摘要1147)      PDF(pc) (959KB)(1139)    收藏

    随着人工智能技术的发展,深度学习技术在人脸识别、行人检测、无人驾驶等领域得到了广泛的应用。而目标检测作为机器视觉中最基本、最具有挑战性的问题之一,近年来受到了广泛的关注。针对目标检测特别是小目标检测问题,归纳了常用的数据集和性能评价指标,并对各类常见数据集的特点、优势及检测难度进行对比,系统性地总结了常用的目标检测方法和小目标检测面临的挑战,梳理了基于深度学习的小目标检测方法的最新工作,重点介绍了基于多尺度的小目标检测方法和基于超分辨率的小目标检测方法等,同时介绍了针对目标检测方法的轻量化策略和一些轻量化模型的性能,并总结了各类方法的特点、优势和局限性等,展望了基于深度学习的小目标检测方法的未来发展方向。

    相关文章 | 多维度评价
    8. 基于知识图谱的智能问答研究综述
    王智悦,于清,王楠,王耀国
    计算机工程与应用    2020, 56 (23): 1-11.   DOI: 10.3778/j.issn.1002-8331.2004-0370
    摘要1132)      PDF(pc) (774KB)(1286)    收藏

    基于知识图谱的问答是近年来研究热点,从基于模板、语义解析、深度学习、知识图谱嵌入四方面介绍基于知识图谱智能问答实现,归纳了各类方法的优缺点,及尚未解决的关键问题。结合当前人工智能技术发展,重点介绍了基于深度学习的智能问答,有助于更多研究者投身于智能问答研究,根据不同行业需求研发适用于不同领域的问答系统,提高社会智能化信息服务水平。

    相关文章 | 多维度评价
    9. 卷积神经网络中的注意力机制综述
    张宸嘉,朱磊,俞璐
    计算机工程与应用    2021, 57 (20): 64-72.   DOI: 10.3778/j.issn.1002-8331.2105-0135
    摘要1093)      PDF(pc) (973KB)(709)    收藏

    注意力机制因其优秀的效果与即插即用的便利性,在深度学习任务中得到了越来越广泛的应用。主要着眼于卷积神经网络,对卷积网络注意力机制发展过程中的各种主流方法进行介绍,并对其核心思想与实现过程进行提取与总结,同时对每种注意力机制方法进行实现,针对同型号辐射源设备实测数据进行对比实验与结果分析,并依据主流方法的思想与实验的结果总结并阐述了卷积网络中的注意力机制的研究现状与未来其发展方向。

    参考文献 | 相关文章 | 多维度评价
    10. 深度强化学习在智能制造中的应用展望综述
    孔松涛,刘池池,史勇,谢义,王堃
    计算机工程与应用    2021, 57 (2): 49-59.   DOI: 10.3778/j.issn.1002-8331.2008-0431
    摘要1027)      PDF(pc) (982KB)(1393)    收藏

    深度强化学习作为机器学习发展的最新成果,已经在很多应用领域崭露头角。关于深度强化学习的算法研究和应用研究,产生了很多经典的算法和典型应用领域。深度强化学习应用在智能制造中,能在复杂环境中实现高水平控制。对深度强化学习的研究进行概述,对深度强化学习基本原理进行介绍,包括深度学习和强化学习。介绍深度强化学习算法应用的理论方法,在此基础对深度强化学习的算法进行了分类介绍,分别介绍了基于值函数和基于策略梯度的强化学习算法,列举了这两类算法的主要发展成果,以及其他相关研究成果。对深度强化学习在智能制造的典型应用进行分类分析。对深度强化学习存在的问题和未来发展方向进行了讨论。

    相关文章 | 多维度评价
    11. 多标签文本分类研究进展
    郝超,裘杭萍,孙毅,张超然
    计算机工程与应用    2021, 57 (10): 48-56.   DOI: 10.3778/j.issn.1002-8331.2101-0096
    摘要1013)      PDF(pc) (906KB)(834)    收藏

    文本分类作为自然语言处理中一个基本任务,在20世纪50年代就已经对其算法进行了研究,现在单标签文本分类算法已经趋向成熟,但是对于多标签文本分类的研究还有很大的提升空间。介绍了多标签文本分类的基本概念以及基本流程,包括数据集获取、文本预处理、模型训练和预测结果。介绍了多标签文本分类的方法。这些方法主要分为两大类:传统机器学习方法和基于深度学习的方法。传统机器学习方法主要包括问题转换方法和算法自适应方法。基于深度学习的方法是利用各种神经网络模型来处理多标签文本分类问题,根据模型结构,将其分为基于CNN结构、基于RNN结构和基于Transfomer结构的多标签文本分类方法。对多标签文本分类常用的数据集进行了梳理总结。对未来的发展趋势进行了分析与展望。

    相关文章 | 多维度评价
    12. 改进RetinaFace的自然场景口罩佩戴检测算法
    牛作东,覃涛,李捍东,陈进军
    计算机工程与应用    2020, 56 (12): 1-7.   DOI: 10.3778/j.issn.1002-8331.2002-0402
    摘要995)      PDF(pc) (1216KB)(878)    收藏

    新型冠状病毒可以通过空气中的飞沫、气溶胶等载体进行传播,在公共场所下正确佩戴口罩可以有效地防止病毒的传播。提出了一种自然场景下人脸口罩佩戴检测方法,对RetinaFace算法进行了改进,增加了人脸口罩佩戴检测任务,优化了损失函数。在特征金字塔网络中引入了一种改进的自注意力机制,增强了特征图的表达能力。建立了包含3 000张图片的数据集,并进行手工标注,用于网络训练。实验结果表明该算法可以有效进行口罩佩戴检测,在自然场景视频中也取得了不错的检测效果。

    相关文章 | 多维度评价
    13. 有遮挡人脸识别方法综述
    董艳花,张树美,赵俊莉
    计算机工程与应用    2020, 56 (9): 1-12.   DOI: 10.3778/j.issn.1002-8331.2001-0029
    摘要927)      PDF(pc) (689KB)(727)    收藏

    现实人脸识别系统的图像采集过程中往往存在光照、姿态、遮挡等不确定性因素,传统的人脸识别方法识别效果不佳,有效地处理这些问题提高识别效率仍是人脸识别系统中的难点。回顾了传统的人脸识别的相关方法,重点针对人脸遮挡的处理方法,从遮挡区域如何重构地生成模型,如何检测遮挡位置的判别模型及鲁棒特征提取三个方面进行了详细的综述,比较了各自的优缺点及应用场合,总结分析了目前有遮挡人脸识别存在的问题和未来研究方向。

    相关文章 | 多维度评价
    14. 引入注意力机制的YOLOv5安全帽佩戴检测方法
    王玲敏, 段军, 辛立伟
    计算机工程与应用    2022, 58 (9): 303-312.   DOI: 10.3778/j.issn.1002-8331.2112-0242
    摘要915)      PDF(pc) (1381KB)(586)    收藏
    对于钢铁制造业、煤矿行业及建筑行业等高危行业来说,施工过程中佩戴安全帽是避免受伤的有效途径之一。针对目前安全帽佩戴检测模型在复杂环境下对小目标和密集目标存在误检和漏检等问题,提出一种改进YOLOv5的目标检测方法来对安全帽的佩戴进行检测。在YOLOv5的主干网络中添加坐标注意力机制(coordinate attention),该机制将位置信息嵌入到通道注意力当中,使网络可以在更大区域上进行注意。将特征融合模块中原有特征金字塔模块替换成加权双向特征金字塔(BiFPN)网络结构,实现高效的双向跨尺度连接和加权特征融合。在自制安全帽数据集上实验结果表明,改进的YOLOv5模型平均精度达到了95.9%,相比于YOLOv5模型,平均精度提高了5.1个百分点,达到了在复杂环境下对小目标和密集目标检测的要求。
    参考文献 | 相关文章 | 多维度评价
    15. 基于深度学习的图像去噪方法研究综述
    刘迪,贾金露,赵玉卿,钱育蓉
    计算机工程与应用    2021, 57 (7): 1-13.   DOI: 10.3778/j.issn.1002-8331.2011-0341
    摘要900)      PDF(pc) (1139KB)(889)    收藏

    图像去噪是利用图像序列的上下文信息去除噪声,从而恢复出清晰图像的一种技术,是计算机视觉领域重要研究内容之一。随着机器学习的发展,深度学习在图像去噪领域得到广泛应用,成为处理图像去噪的有效解决方法。分析了深度学习图像去噪方法;依据网络结构详细分析了图像去噪方法的思想,并对优缺点进行梳理总结;通过在DND、PolyU等数据集上的实验结果,对比分析基于深度学习去噪方法的性能;对图像去噪研究的关键问题进行总结,并讨论该领域未来研究的发展趋势。

    相关文章 | 多维度评价
    16. 深度神经网络的小样本学习综述
    祝钧桃,姚光乐,张葛祥,李军,杨强,王胜,叶绍泽
    计算机工程与应用    2021, 57 (7): 22-33.   DOI: 10.3778/j.issn.1002-8331.2012-0200
    摘要871)      PDF(pc) (859KB)(592)    收藏

    随着最近深度学习技术的蓬勃发展,深度神经网络(DNN)在大规模的图像分类与识别任务中取得了突破性的进展,但其在解决小样本学习问题时仍面临巨大挑战。小样本学习(FSL)是指在少量有监督样本的情况下学习一个能解决实际问题的模型,在深度学习领域具有重要意义。这促使该系统梳理了已有的DNN下的小样本学习工作,根据它们在解决小样本学习问题时所采用的技术,将DNN下的小样本学习解决方案分为四种策略:数据增强、度量学习、外部记忆、参数优化。根据这些策略,对现有的DNN下的小样本学习方法进行了全面的综述,同时总结了每一种策略在相关基准上的表现。强调了现有技术存在的局限性并对其未来的发展方向进行了展望,为今后的研究工作提供参考。

    相关文章 | 多维度评价
    17. 人工神经网络模型发展及应用综述
    张驰,郭媛,黎明
    计算机工程与应用    2021, 57 (11): 57-69.   DOI: 10.3778/j.issn.1002-8331.2102-0256
    摘要862)      PDF(pc) (781KB)(1027)    收藏

    人工神经网络与其他学科领域联系日益紧密,人们通过对人工神经网络层结构的探索和改进来解决各个领域的问题。根据人工神经网络相关文献进行分析,综述了人工神经网络算法以及网络模型结构的发展史,根据神经网络的发展介绍了人工神经网络相关概念,其中主要涉及到多层感知器、反向传播神经网络、卷积神经网络以及递归神经网络,描述了卷积神经网络发展当中出现的部分卷积神经网络模型和递归神经网络中常用的相关网络结构,分别综述了各个人工神经网络算法在相关领域的应用情况,总结了人工神经网络的未来发展方向。

    相关文章 | 多维度评价
    18. 基于CNN和LSTM的多通道注意力机制文本分类模型
    滕金保,孔韦韦,田乔鑫,王照乾,李龙
    计算机工程与应用    2021, 57 (23): 154-162.   DOI: 10.3778/j.issn.1002-8331.2104-0212
    摘要857)      PDF(pc) (844KB)(328)    收藏

    针对传统的卷积神经网络(Convolutional Neural Network,CNN)和长短时记忆网络(Long Short-Term Memory,LSTM)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于CNN和LSTM的多通道注意力机制文本分类模型。使用CNN和LSTM提取文本局部信息和上下文特征;用多通道注意力机制(Attention)提取CNN和LSTM输出信息的注意力分值;将多通道注意力机制的输出信息进行融合,实现了有效提取文本特征的基础上将注意力集中在重要的词语上。在三个公开数据集上的实验结果表明,提出的模型相较于CNN、LSTM及其改进模型效果更好,可以有效提高文本分类的效果。

    参考文献 | 相关文章 | 多维度评价
    19. 自然语言处理预训练模型的研究综述
    余同瑞,金冉,韩晓臻,李家辉,郁婷
    计算机工程与应用    2020, 56 (23): 12-22.   DOI: 10.3778/j.issn.1002-8331.2006-0040
    摘要836)      PDF(pc) (689KB)(683)    收藏

    近年来,深度学习技术被广泛应用于各个领域,基于深度学习的预处理模型将自然语言处理带入一个新时代。预训练模型的目标是如何使预训练好的模型处于良好的初始状态,在下游任务中达到更好的性能表现。对预训练技术及其发展历史进行介绍,并按照模型特点划分为基于概率统计的传统模型和基于深度学习的新式模型进行综述;简要分析传统预训练模型的特点及局限性,重点介绍基于深度学习的预训练模型,并针对它们在下游任务的表现进行对比评估;梳理出具有启发意义的新式预训练模型,简述这些模型的改进机制以及在下游任务中取得的性能提升;总结目前预训练的模型所面临的问题,并对后续发展趋势进行展望。

    相关文章 | 多维度评价
    20. 机器学习在股票预测中的应用综述
    徐浩然,许波,徐可文
    计算机工程与应用    2020, 56 (12): 19-24.   DOI: 10.3778/j.issn.1002-8331.2001-0353
    摘要825)      PDF(pc) (892KB)(1074)    收藏

    揭示股票市场运行规律一直是研究的热点,近些年机器学习方法在股票预测方面取得了不错的进展,相较于传统的基本面分析、技术分析等方法,显示了独特的优势。从股票预测研究的主要问题、特征工程和机器学习算法应用等三个方面,对近年来该领域的主要文献进行总结,并针对每种算法在应用中的特点与不足进行评述。围绕目前机器学习在股票预测上遇到的主要问题,从迁移学习、特征工程、深度学习模型融合等方面进行了深入的分析与展望。

    相关文章 | 多维度评价
    21. 深度学习下的医学影像分割算法综述
    彭璟,罗浩宇,赵淦森,林成创,易序晟,陈少洁
    计算机工程与应用    2021, 57 (3): 44-57.   DOI: 10.3778/j.issn.1002-8331.2010-0335
    摘要806)      PDF(pc) (1397KB)(978)    收藏

    医学影像分割是计算机视觉在医学影像处理中的一个重要应用领域,其目标是从医学影像中分割出目标区域,为后续的疾病诊断和治疗提供有效的帮助。近年来深度学习技术在图像处理方面取得了巨大进展,基于深度学习的医学影像分割算法逐渐成为该领域研究的重点和热点。叙述了计算机视觉下的医学影像分割任务及其难点,重点综述了基于深度学习的医学影像分割算法,对当前具有代表性的相关方法进行了分类和总结,介绍了医学影像分割算法常用的评价指标和数据集。对该技术的发展进行了总结和展望。

    相关文章 | 多维度评价
    22. 胶囊神经网络研究现状与未来的浅析
    贺文亮,朱敏玲
    计算机工程与应用    2021, 57 (3): 33-43.   DOI: 10.3778/j.issn.1002-8331.2009-0209
    摘要751)      PDF(pc) (890KB)(621)    收藏

    当今时代的人工智能技术迅速发展,推动了社会的巨大进步。深度学习作为人工智能领域重要的一部分,具有非常广阔的应用前景,近年来,越来越多的专家学者开始研究深度学习领域相关技术,比较典型的两个方向就是自然语言处理和计算机视觉,其中计算机视觉的发展大力引领着深度学习领域的进步。介绍了卷积神经网络的经典模型和深度学习中新型神经网络模型——胶囊网络以及其动态路由算法,并对比了二者的优劣性。对胶囊网络的应用给予综述,以图像和文本两方面来阐述胶囊网络的应用领域和优势所在。最后进行概括总结,并展望了胶囊网络可能的改进方向。

    相关文章 | 多维度评价
    23. 神经风格迁移模型综述
    唐稔为,刘启和,谭浩
    计算机工程与应用    2021, 57 (19): 32-43.   DOI: 10.3778/j.issn.1002-8331.2105-0296
    摘要738)      PDF(pc) (1078KB)(526)    收藏

    神经风格迁移技术主要用于对图像、视频等进行风格化,使其具有艺术美感,该领域极具应用价值,是人工智能的热门研究领域之一。为推动神经风格迁移领域的研究发展,对神经风格迁移技术进行了全面概述。简述了非真实感渲染技术和传统的纹理迁移技术。对现有神经风格迁移模型进行了分类整理,并详细探讨了各类代表性模型的算法原理及后续改进,分析了神经风格迁移技术的应用市场。提出对风格迁移模型质量的评判应该从定性评估和定量评估两个方面来考虑,并从各个角度讨论了现阶段风格迁移技术存在的问题以及未来研究方向。最后强调应提高模型的综合能力,在保证生成质量的情况下提升生成速度以及泛化能力。

    参考文献 | 相关文章 | 多维度评价
    24. 中文领域命名实体识别综述
    焦凯楠,李欣,朱容辰
    计算机工程与应用    2021, 57 (16): 1-15.   DOI: 10.3778/j.issn.1002-8331.2103-0127
    摘要730)      PDF(pc) (928KB)(506)    收藏

    命名实体识别(Named Entity Recognition,NER)作为自然语言处理领域经典的研究主题,是智能问答、知识图谱等任务的基础技术。领域命名实体识别(Domain Named Entity Recognition,DNER)是面向特定领域的NER方案。在深度学习技术的推动下,中文DNER取得了突破性进展。概括了中文DNER的研究框架,从领域数据源的确定、领域实体类型及规范制定、领域数据集的标注规范、中文DNER评估指标四个角度对国内外已有研究成果进行了综合评述;总结了目前常见的中文DNER的技术框架,介绍了基于词典和规则的模式匹配方法、统计机器学习方法、基于深度学习的方法、多方融合的深度学习方法,并重点分析了基于词向量表征和深度学习的中文DNER方法;讨论了中文DNER的典型应用场景,对未来发展方向进行了展望。

    相关文章 | 多维度评价
    25. 基于深度学习的图像压缩算法研究综述
    于恒,梅红岩,许晓明,贾慧萍
    计算机工程与应用    2020, 56 (15): 15-23.   DOI: 10.3778/j.issn.1002-8331.2003-0294
    摘要713)      PDF(pc) (923KB)(1138)    收藏

    随着深度学习的不断发展与图像数据的爆炸式增长,如何使用深度学习来获得更高压缩比和更高质量的图像逐渐成为热点研究问题之一。通过对近几年相关文献的分析与整理,将基于深度学习的图像压缩方法按照卷积神经网络、循环神经网络、生成对抗网络进行总结与分析,对不同种方法分别列举了具有代表性的实例,并对基于深度学习的图像压缩算法的常用训练数据集、评价指标进行了介绍,根据深度学习在图像压缩领域中的优势对其未来的发展趋势进行了总结与讨论。

    相关文章 | 多维度评价
    26. 基于计算机视觉的Transformer研究进展
    刘文婷, 卢新明
    计算机工程与应用    2022, 58 (6): 1-16.   DOI: 10.3778/j.issn.1002-8331.2106-0442
    摘要711)      PDF(pc) (1089KB)(574)    收藏
    Transformer是一种基于自注意力机制、并行化处理数据的深度神经网络。近几年基于Transformer的模型成为计算机视觉任务的重要研究方向。针对目前国内基于Transformer综述性文章的空白,对其在计算机视觉上的应用进行概述。回顾了Transformer的基本原理,重点介绍了其在图像分类、目标检测、图像分割等七个视觉任务上的应用,并对效果显著的模型进行分析。最后对Transformer在计算机视觉中面临的挑战以及未来的发展趋势进行了总结和展望。
    参考文献 | 相关文章 | 多维度评价
    27. 目标检测难点问题最新研究进展综述
    罗会兰,彭珊,陈鸿坤
    计算机工程与应用    2021, 57 (5): 36-46.   DOI: 10.3778/j.issn.1002-8331.2011-0205
    摘要709)      PDF(pc) (687KB)(577)    收藏

    目标检测是计算机视觉领域最基本的问题之一,已经被广泛地探讨和研究。虽然近年来基于深度卷积神经网络的目标检测方法使得检测精度有了很大提升,但是在实际应用中仍然存在较多挑战。综述了目标检测领域的最新研究趋势,针对不同的目标检测挑战和难题:目标尺度变化范围大、实时检测问题、弱监督检测问题和样本不均衡问题,从四个方面综述了最近的目标检测研究方法,分析了不同算法之间的关系,阐述了新的改进方法、检测过程和实现效果,并详细比较了不同算法的检测精度、优缺点和适用场景。最后讨论了未来有可能进一步发展的几个方向。

    相关文章 | 多维度评价
    28. 基于三点定位与加权坐标的三角定位算法
    徐乐,韦玉科
    计算机工程与应用    2020, 56 (9): 111-116.   DOI: 10.3778/j.issn.1002-8331.1901-0156
    摘要679)      PDF(pc) (910KB)(353)    收藏

    针对传统的基于接收信号强度指示(Received Signal Strength Indication,RSSI)的三角定位算法产生的定位误差大和定位结果波动性大的问题,提出一种基于三点定位与加权坐标的三角定位算法。该算法对RSSI数据进行卡尔曼滤波操作,降低RSSI数据的波动性;将滤波后数据经过基于RSSI选取的三点定位算法,获取粗定位坐标;将获取的三个粗定位坐标基于加权坐标的三角定位算法得到待定位点坐标。实验结果表明,在RSSI-距离衰减模型拟合度为96%的条件下,提出的算法的最大误差为1.602 m,平均误差为0.880 m。

    相关文章 | 多维度评价
    29. 深度学习的典型目标检测算法研究综述
    许德刚,王露,李凡
    计算机工程与应用    2021, 57 (8): 10-25.   DOI: 10.3778/j.issn.1002-8331.2012-0449
    摘要656)      PDF(pc) (736KB)(570)    收藏

    目标检测是计算机视觉的一个重要研究方向,其目的是精确识别给定图像中特定目标物体的类别和位置。近年来,深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)所具有的特征学习和迁移学习能力,在目标检测算法特征提取、图像表达、分类与识别等方面取得了显著进展。介绍了基于深度学习目标检测算法的研究进展、常用数据集特点以及性能指标评价的关键参数,对比分析了双阶段、单阶段以及其他改进算法的网络结构和实现方式。阐述了算法在人脸、显著目标、行人、遥感图像、医学图像、粮虫等检测领域的应用进展,结合当前存在的问题和挑战,展望分析了其未来的研究方向。

    相关文章 | 多维度评价
    30. 卷积神经网络在高光谱图像分类中的应用综述
    万亚玲,钟锡武,刘慧,钱育蓉
    计算机工程与应用    2021, 57 (4): 1-10.   DOI: 10.3778/j.issn.1002-8331.2010-0423
    摘要655)      PDF(pc) (764KB)(573)    收藏

    高光谱图像(Hyperspectral Imagery,HSI)分类是高光谱图像处理和应用的一项重要工作。随着深度学习的不断发展,卷积神经网络(Convolutional Neural Network,CNN)日渐成为处理高光谱遥感图像分类问题的一个有效方法。首先对高光谱遥感图像分类任务进行了概述,分析了目前存在的问题;其次对CNN及其基于光谱特征、空间特征、空谱特征的分类方法进行了系统的梳理,并且将上述的分类方法通过实验分析其性能;最后对高光谱遥感图像分类的关键问题进行了总结,并讨论了未来的研究方向。

    相关文章 | 多维度评价
    31. 智能博弈对抗中的对手建模方法及其应用综述
    魏婷婷, 袁唯淋, 罗俊仁, 张万鹏
    计算机工程与应用    2022, 58 (9): 19-29.   DOI: 10.3778/j.issn.1002-8331.2202-0297
    摘要639)      PDF(pc) (904KB)(200)    收藏
    智能博弈对抗一直是人工智能研究的热点。在博弈对抗环境中,通过对对手进行建模,可以推测敌对智能体动作、目标、策略等相关属性,为博弈策略制定提供关键信息。对手建模方法在竞技类游戏和作战仿真推演等领域的应用前景广阔,博弈策略的制定必须以博弈各方的行动策略为前提,因此建立一个准确的对手行为模型对于预测其意图尤其重要。从内涵、方法、应用三个方面,阐述了对手建模的必要性,对现有建模方式进行了分类;对基于强化学习的预测方法、基于心智理论的推理方法和基于贝叶斯的优化方法进行了梳理与总结;以序贯博弈(德州扑克)、即时策略博弈(星际争霸)和元博弈为典型应用场景,分析了智能博弈对抗过程中的对手建模的作用;从有限理性、策略欺骗性和可解释性三个方面进行了对手建模技术发展的展望。
    参考文献 | 相关文章 | 多维度评价
    32. 改进YOLO v3算法及其在安全帽检测中的应用
    王兵,李文璟,唐欢
    计算机工程与应用    2020, 56 (9): 33-40.   DOI: 10.3778/j.issn.1002-8331.1912-0267
    摘要613)      PDF(pc) (1076KB)(568)    收藏

    YOLO v3目标检测算法由于其速度快、精度较高,在工业中获得了广泛应用,但存在目标函数与评价指标不统一的问题,针对此问题提出了改进YOLO v3目标检测算法。该算法改进GIoU计算方法,并与YOLO v3算法目标函数相结合,设计了一个新的目标函数,实现了目标函数局部最优为IoU局部最优。公共数据集VOC2007和安全帽佩戴数据集测试结果表明,相比于YOLO v3算法,改进YOLO v3的mAP-50分别提高了2.07%和2.05%。

    相关文章 | 多维度评价
    33. 基于深度学习的乳腺癌病理图像分类研究综述
    李华,杨嘉能,刘凤,南方哲,钱育蓉
    计算机工程与应用    2020, 56 (13): 1-11.   DOI: 10.3778/j.issn.1002-8331.2001-0220
    摘要610)      PDF(pc) (919KB)(1002)    收藏

    准确、高效的乳腺癌病理图像分类是计算机辅助诊断的重要研究内容之一。随着机器学习技术的发展,深度学习日渐成为一种有效的乳腺癌病理图像分类处理方法。分析了乳腺癌病理图像分类方法及目前存在的问题;介绍了四种相关的深度学习模型,对基于深度学习的乳腺癌病理图像分类方法进行梳理,并通过实验对比分析现有模型的性能;最后对乳腺癌病理图像分类的关键问题进行了总结,并讨论了未来研究的发展趋势。

    相关文章 | 多维度评价
    34. 网络未知攻击检测的深度学习方法
    狄冲,李桐
    计算机工程与应用    2020, 56 (22): 109-116.   DOI: 10.3778/j.issn.1002-8331.2003-0353
    摘要606)      PDF(pc) (753KB)(363)    收藏

    为了实现入侵检测系统对未知攻击类型的检测,提出基于深度学习的网络异常检测方法。利用置信度神经网络,对已知类型流量和未知攻击流量进行自适应判别。基于深度神经网络,制定置信度估计方法评估模型分类结果,训练模型面向已知类型流量时输出高置信度值,识别到未知攻击流量时输出低置信度值,从而实现对未知攻击网络流量的检测,并设计自适应损失平衡策略和基于学习自动机的动态正则化策略优化异常检测模型。在网络异常检测UNSW-NB15和CICIDS 2017数据集上进行仿真实验,评估模型效果。结果表明,该方法实现了未知攻击流量的有效检测,并提高了已知类型流量的分类效果,从而增强了入侵检测系统的综合性能。

    相关文章 | 多维度评价
    35. 社交网络中用户隐私推理与保护研究综述
    朴杨鹤然,崔晓晖
    计算机工程与应用    2020, 56 (19): 1-12.   DOI: 10.3778/j.issn.1002-8331.2005-0361
    摘要603)      PDF(pc) (761KB)(421)    收藏

    如今微博和Twitter等社交网络平台被广泛地用于交流、创建在线社区并进行社交活动。用户所发布的内容可以被推理出大量隐私信息,这导致社交网络中针对用户的隐私推理技术的兴起。利用用户的文本内容及在线行为等知识可以对用户进行推理攻击,社交关系推理和属性推理是对社交网络用户隐私的两种基本攻击。针对推理攻击保护机制和方法的研究也在日益增加,对隐私推理和保护技术相关的研究和文献进行了分类并总结,最后进行了探讨和展望。

    相关文章 | 多维度评价
    36. 目标检测算法在交通场景中应用综述
    肖雨晴,杨慧敏
    计算机工程与应用    2021, 57 (6): 30-41.   DOI: 10.3778/j.issn.1002-8331.2011-0361
    摘要603)      PDF(pc) (919KB)(359)    收藏

    目标检测是计算机视觉领域的重要研究任务,在机器人、自动驾驶、工业检测等方面应用广泛。在深度学习理论的基础上,系统性总结了目标检测算法的发展与研究现状,对两类算法的特点、优缺点和实时性进行对比。以交通场景中三类典型物体(非机动车、机动车和行人)为目标,从传统检测方法、目标检测算法、目标检测算法优化、三维目标检测、多模态目标检测和重识别六个方面分别论述和总结目标检测算法检测识别交通场景目标的研究现状与应用情况,重点介绍了各类方法的优势、局限性和适用场景。归纳了常用目标检测和交通场景数据集及评价标准,比较分析两类算法性能,展望目标检测算法在交通场景中应用研究的发展趋势,为智能交通、自动驾驶提供研究思路。

    相关文章 | 多维度评价
    37. 基于深度学习的医学图像配准技术研究进展
    郭艳芬,崔喆,杨智鹏,彭静,胡金蓉
    计算机工程与应用    2021, 57 (15): 1-8.   DOI: 10.3778/j.issn.1002-8331.2101-0281
    摘要595)      PDF(pc) (681KB)(561)    收藏

    医学图像配准技术对于病灶检测、临床诊断、手术规划,疗效评估等有着广泛的应用价值。系统性地总结了基于深度学习的配准算法,从深度迭代、全监督、弱监督到无监督学习的研究发展趋势,分析了各种方法的优势与局限。总体来看,无论是对数据的要求、配准精度,还是计算效率,无监督学习因其不依赖金标准和解剖标签,采用端到端的网络配准框架就可以自动执行需要的任务等优势成为研究的主流方向。然而,基于无监督学习的医学图像配准方法在医学图像领域的可解释性、跨模态多样性和可重复可扩展性方面同样面临着一些研究难点和挑战,这为将来实现更精准的医学图像配准方法指明了研究方向。

    相关文章 | 多维度评价
    38. 正弦余弦算法的研究及应用综述
    雍龙泉,黎延海,贾伟
    计算机工程与应用    2020, 56 (14): 26-34.   DOI: 10.3778/j.issn.1002-8331.2004-0015
    摘要591)      PDF(pc) (1453KB)(561)    收藏

    正弦余弦算法(SCA)是一种新颖的随机优化算法,主要利用正弦函数和余弦函数的波动性与周期性来搜索和迭代,从而达到寻优目的。给出了正弦余弦算法的基本原理,讨论了影响正弦余弦算法性能的主要参数,分析了正弦余弦算法的搜索机制。综述了算法的改进策略,并列举了正弦余弦算法在调度问题、控制器优化、电力系统优化、数据挖掘、图像处理、目标跟踪等方面的应用。最后结合正弦余弦算法的特点和研究现状,对正弦余弦算法未来的研究发展方向进行了展望。

    相关文章 | 多维度评价
    39. 文本情感分析方法研究综述
    王婷,杨文忠
    计算机工程与应用    2021, 57 (12): 11-24.   DOI: 10.3778/j.issn.1002-8331.2101-0022
    摘要585)      PDF(pc) (906KB)(698)    收藏

    文本情感分析是自然语言处理领域的一个重要分支,广泛应用于舆情分析和内容推荐等方面,是近年来的研究热点。根据使用的不同方法,将其划分为基于情感词典的情感分析方法、基于传统机器学习的情感分析方法、基于深度学习的情感分析方法。通过对这三种方法进行对比,分析其研究成果,并对不同方法的优缺点进行归纳总结,介绍相关数据集和评价指标及应用场景,对情感分析子任务进行简单概括,发现将来的情感分析问题的研究趋势及应用领域,并为研究者在相关领域方面提供一定的帮助和指导。

    相关文章 | 多维度评价
    40. 基于深度强化学习的三维路径规划算法
    黄东晋,蒋晨凤,韩凯丽
    计算机工程与应用    2020, 56 (15): 30-36.   DOI: 10.3778/j.issn.1002-8331.2001-0347
    摘要580)      PDF(pc) (1152KB)(995)    收藏

    合理的路线选择是智能体三维路径规划研究领域的难点。现有路径规划方法存在不能很好地适应未知地形,避障形式单一等问题。针对这些问题,提出了一种基于LSTM-PPO的智能体三维路径规划算法。利用虚拟射线探测仿真环境,并将收集到的状态空间和动作状态引入长短时记忆网络。通过额外的奖惩函数和好奇心驱动让智能体学会跳跃通过低矮障碍物,避开大型障碍物。利用PPO算法的截断项机制使得规划策略更新的幅度更加优化。实验结果表明,该算法是可行的,能够更加智能合理地选择路线,很好地适应存在多样障碍物的未知环境。

    相关文章 | 多维度评价