摘要点击排行

    一年内发表文章 |  两年内 |  三年内 |  全部

    当前位置: 两年内
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 改进CBAM的轻量级注意力模型
    付国栋,黄进,杨涛,郑思宇
    计算机工程与应用    2021, 57 (20): 150-156.   DOI: 10.3778/j.issn.1002-8331.2101-0369
    摘要1524)      PDF(pc) (808KB)(486)    收藏

    近几年注意力模型在计算机视觉领域取得了广泛的应用,通过在卷积神经网络中加入注意力模型,网络的性能可以显著提升。然而大多数现有的方法都专注于开发更复杂的注意力模型,以使卷积神经网络获得更强的特征表达能力,但这也不可避免地增加了模型的复杂性。为了在性能和复杂度间取得平衡,对CBAM模型进行优化提出了轻量级的EAM(Efficient Attention Module)模型。针对CBAM的通道注意力模块,引入一维卷积替代全连接层来聚合各通道间的信息;对于CBAM的空间注意力模块,将大卷积核替换为空洞卷积来增加感受野以聚合更广的空间上下文信息。将该模型融入YOLOv4后在VOC2012数据集上进行测试,mAP提高3.48个百分点。实验结果表明,该注意力模型只引入较小的参数量,网络性能可获得较大提升。

    参考文献 | 相关文章 | 多维度评价
    2. 深度强化学习及在路径规划中的研究进展
    张荣霞,武长旭,孙同超,赵增顺
    计算机工程与应用    2021, 57 (19): 44-56.   DOI: 10.3778/j.issn.1002-8331.2104-0369
    摘要1386)      PDF(pc) (1134KB)(592)    收藏

    路径规划的目的是让机器人在移动过程中既能避开障碍物,又能快速规划出最短路径。在分析基于强化学习的路径规划算法优缺点的基础上,引出能够在复杂动态环境下进行良好路径规划的典型深度强化学习DQN(Deep Q-learning Network)算法。深入分析了DQN算法的基本原理和局限性,对比了各种DQN变种算法的优势和不足,进而从训练算法、神经网络结构、学习机制、AC(Actor-Critic)框架的多种变形四方面进行了分类归纳。提出了目前基于深度强化学习的路径规划方法所面临的挑战和亟待解决的问题,并展望了未来的发展方向,可为机器人智能路径规划及自动驾驶等方向的发展提供参考。

    参考文献 | 相关文章 | 多维度评价
    3. 卷积神经网络中的注意力机制综述
    张宸嘉,朱磊,俞璐
    计算机工程与应用    2021, 57 (20): 64-72.   DOI: 10.3778/j.issn.1002-8331.2105-0135
    摘要1331)      PDF(pc) (973KB)(807)    收藏

    注意力机制因其优秀的效果与即插即用的便利性,在深度学习任务中得到了越来越广泛的应用。主要着眼于卷积神经网络,对卷积网络注意力机制发展过程中的各种主流方法进行介绍,并对其核心思想与实现过程进行提取与总结,同时对每种注意力机制方法进行实现,针对同型号辐射源设备实测数据进行对比实验与结果分析,并依据主流方法的思想与实验的结果总结并阐述了卷积网络中的注意力机制的研究现状与未来其发展方向。

    参考文献 | 相关文章 | 多维度评价
    4. 基于CNN和LSTM的多通道注意力机制文本分类模型
    滕金保,孔韦韦,田乔鑫,王照乾,李龙
    计算机工程与应用    2021, 57 (23): 154-162.   DOI: 10.3778/j.issn.1002-8331.2104-0212
    摘要1089)      PDF(pc) (844KB)(368)    收藏

    针对传统的卷积神经网络(Convolutional Neural Network,CNN)和长短时记忆网络(Long Short-Term Memory,LSTM)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于CNN和LSTM的多通道注意力机制文本分类模型。使用CNN和LSTM提取文本局部信息和上下文特征;用多通道注意力机制(Attention)提取CNN和LSTM输出信息的注意力分值;将多通道注意力机制的输出信息进行融合,实现了有效提取文本特征的基础上将注意力集中在重要的词语上。在三个公开数据集上的实验结果表明,提出的模型相较于CNN、LSTM及其改进模型效果更好,可以有效提高文本分类的效果。

    参考文献 | 相关文章 | 多维度评价
    5. 引入注意力机制的YOLOv5安全帽佩戴检测方法
    王玲敏, 段军, 辛立伟
    计算机工程与应用    2022, 58 (9): 303-312.   DOI: 10.3778/j.issn.1002-8331.2112-0242
    摘要1086)      PDF(pc) (1381KB)(653)    收藏
    对于钢铁制造业、煤矿行业及建筑行业等高危行业来说,施工过程中佩戴安全帽是避免受伤的有效途径之一。针对目前安全帽佩戴检测模型在复杂环境下对小目标和密集目标存在误检和漏检等问题,提出一种改进YOLOv5的目标检测方法来对安全帽的佩戴进行检测。在YOLOv5的主干网络中添加坐标注意力机制(coordinate attention),该机制将位置信息嵌入到通道注意力当中,使网络可以在更大区域上进行注意。将特征融合模块中原有特征金字塔模块替换成加权双向特征金字塔(BiFPN)网络结构,实现高效的双向跨尺度连接和加权特征融合。在自制安全帽数据集上实验结果表明,改进的YOLOv5模型平均精度达到了95.9%,相比于YOLOv5模型,平均精度提高了5.1个百分点,达到了在复杂环境下对小目标和密集目标检测的要求。
    参考文献 | 相关文章 | 多维度评价
    6. 中文领域命名实体识别综述
    焦凯楠,李欣,朱容辰
    计算机工程与应用    2021, 57 (16): 1-15.   DOI: 10.3778/j.issn.1002-8331.2103-0127
    摘要862)      PDF(pc) (928KB)(539)    收藏

    命名实体识别(Named Entity Recognition,NER)作为自然语言处理领域经典的研究主题,是智能问答、知识图谱等任务的基础技术。领域命名实体识别(Domain Named Entity Recognition,DNER)是面向特定领域的NER方案。在深度学习技术的推动下,中文DNER取得了突破性进展。概括了中文DNER的研究框架,从领域数据源的确定、领域实体类型及规范制定、领域数据集的标注规范、中文DNER评估指标四个角度对国内外已有研究成果进行了综合评述;总结了目前常见的中文DNER的技术框架,介绍了基于词典和规则的模式匹配方法、统计机器学习方法、基于深度学习的方法、多方融合的深度学习方法,并重点分析了基于词向量表征和深度学习的中文DNER方法;讨论了中文DNER的典型应用场景,对未来发展方向进行了展望。

    相关文章 | 多维度评价
    7. 神经风格迁移模型综述
    唐稔为,刘启和,谭浩
    计算机工程与应用    2021, 57 (19): 32-43.   DOI: 10.3778/j.issn.1002-8331.2105-0296
    摘要852)      PDF(pc) (1078KB)(554)    收藏

    神经风格迁移技术主要用于对图像、视频等进行风格化,使其具有艺术美感,该领域极具应用价值,是人工智能的热门研究领域之一。为推动神经风格迁移领域的研究发展,对神经风格迁移技术进行了全面概述。简述了非真实感渲染技术和传统的纹理迁移技术。对现有神经风格迁移模型进行了分类整理,并详细探讨了各类代表性模型的算法原理及后续改进,分析了神经风格迁移技术的应用市场。提出对风格迁移模型质量的评判应该从定性评估和定量评估两个方面来考虑,并从各个角度讨论了现阶段风格迁移技术存在的问题以及未来研究方向。最后强调应提高模型的综合能力,在保证生成质量的情况下提升生成速度以及泛化能力。

    参考文献 | 相关文章 | 多维度评价
    8. 基于计算机视觉的Transformer研究进展
    刘文婷, 卢新明
    计算机工程与应用    2022, 58 (6): 1-16.   DOI: 10.3778/j.issn.1002-8331.2106-0442
    摘要793)      PDF(pc) (1089KB)(614)    收藏
    Transformer是一种基于自注意力机制、并行化处理数据的深度神经网络。近几年基于Transformer的模型成为计算机视觉任务的重要研究方向。针对目前国内基于Transformer综述性文章的空白,对其在计算机视觉上的应用进行概述。回顾了Transformer的基本原理,重点介绍了其在图像分类、目标检测、图像分割等七个视觉任务上的应用,并对效果显著的模型进行分析。最后对Transformer在计算机视觉中面临的挑战以及未来的发展趋势进行了总结和展望。
    参考文献 | 相关文章 | 多维度评价
    9. 智能博弈对抗中的对手建模方法及其应用综述
    魏婷婷, 袁唯淋, 罗俊仁, 张万鹏
    计算机工程与应用    2022, 58 (9): 19-29.   DOI: 10.3778/j.issn.1002-8331.2202-0297
    摘要778)      PDF(pc) (904KB)(223)    收藏
    智能博弈对抗一直是人工智能研究的热点。在博弈对抗环境中,通过对对手进行建模,可以推测敌对智能体动作、目标、策略等相关属性,为博弈策略制定提供关键信息。对手建模方法在竞技类游戏和作战仿真推演等领域的应用前景广阔,博弈策略的制定必须以博弈各方的行动策略为前提,因此建立一个准确的对手行为模型对于预测其意图尤其重要。从内涵、方法、应用三个方面,阐述了对手建模的必要性,对现有建模方式进行了分类;对基于强化学习的预测方法、基于心智理论的推理方法和基于贝叶斯的优化方法进行了梳理与总结;以序贯博弈(德州扑克)、即时策略博弈(星际争霸)和元博弈为典型应用场景,分析了智能博弈对抗过程中的对手建模的作用;从有限理性、策略欺骗性和可解释性三个方面进行了对手建模技术发展的展望。
    参考文献 | 相关文章 | 多维度评价
    10. 多智能体路径规划综述
    刘志飞, 曹雷, 赖俊, 陈希亮, 陈英
    计算机工程与应用    2022, 58 (20): 43-64.   DOI: 10.3778/j.issn.1002-8331.2203-0467
    摘要700)      PDF(pc) (1013KB)(203)    收藏
    多智能体路径规划(multi-agent path finding,MAPF)是为多个智能体规划路径的问题,关键约束是多个智能体同时沿着规划路径行进而不会发生冲突。MAPF在物流、军事、安防等领域有着大量应用。对国内外关于MAPF的主要研究成果进行系统整理和分类,按照规划方式不同,MAPF算法分为集中式规划算法和分布式执行算法。集中式规划算法是最经典和最常用的MAPF算法,主要分为基于[A*]搜索、基于冲突搜索、基于代价增长树和基于规约四种算法。分布式执行算法是人工智能领域兴起的基于强化学习的MAPF算法,按照改进技术不同,分布式执行算法分为专家演示型、改进通信型和任务分解型三种算法。基于上述分类,比较MAPF各种算法的特点和适用性,分析现有算法的优点和不足,指出现有算法面临的挑战并对未来工作进行了展望。
    参考文献 | 相关文章 | 多维度评价
    11. COVID-19医学影像数据集及研究进展
    刘锐,丁辉,尚媛园,邵珠宏,刘铁
    计算机工程与应用    2021, 57 (22): 15-27.   DOI: 10.3778/j.issn.1002-8331.2106-0118
    摘要664)      PDF(pc) (1013KB)(299)    收藏

    由于影像学技术在新型冠状病毒肺炎(COVID-19)的诊断和评估中发挥了重要作用,COVID-19相关数据集陆续被公布,但目前针对相关文献中数据集以及研究进展的整理相对较少。为此,通过COVID-19相关的期刊论文、报告和相关开源数据集网站,对涉及到的新冠肺炎数据集及深度学习模型进行整理和分析,包括计算机断层扫描(CT)图像数据集和X射线(CXR)图像数据集。对这些数据集呈现的医学影像的特征进行分析;重点论述开源数据集,以及在相关数据集上表现较好的分类和分割模型。最后讨论了肺部影像学技术未来的发展趋势。

    参考文献 | 相关文章 | 多维度评价
    12. 基于深度学习的视觉多目标跟踪算法综述
    张瑶,卢焕章,张路平,胡谋法
    计算机工程与应用    2021, 57 (13): 55-66.   DOI: 10.3778/j.issn.1002-8331.2102-0260
    摘要657)      PDF(pc) (931KB)(541)    收藏

    视觉多目标跟踪是计算机视觉领域的热点问题,然而,场景中目标数量的不确定、目标之间的相互遮挡、目标特征区分度不高等多种难题导致了视觉多目标跟踪现实应用进展缓慢。近年来,随着视觉智能处理研究的不断深入,涌现出多种多样的深度学习类视觉多目标跟踪算法。在分析了视觉多目标跟踪面临的挑战和难点基础上,将算法分为基于检测跟踪(Detection-Based-Tracking,DBT)、联合检测跟踪(Joint-Detection-Tracking,JDT)两大类及六个子类,研究不同类别算法的优缺点。分析表明,DBT类算法结构简单,但算法各子环节的关联度不高,JDT类算法融合多模块联合学习,在多项跟踪评价指标中占优。DBT类算法中特征提取模块是解决目标遮挡问题的关键,但损失了算法速度,JDT类算法对检测模块更为依赖。目前,多目标跟踪跟踪总体是从DBT类算法向JDT发展,分阶段实现算法准确度与速度的均衡;提出多目标跟踪算法未来在数据集、各子模块、具体场景应用等方面的发展方向。

    相关文章 | 多维度评价
    13. 文本情感分析方法研究综述
    王婷,杨文忠
    计算机工程与应用    2021, 57 (12): 11-24.   DOI: 10.3778/j.issn.1002-8331.2101-0022
    摘要654)      PDF(pc) (906KB)(781)    收藏

    文本情感分析是自然语言处理领域的一个重要分支,广泛应用于舆情分析和内容推荐等方面,是近年来的研究热点。根据使用的不同方法,将其划分为基于情感词典的情感分析方法、基于传统机器学习的情感分析方法、基于深度学习的情感分析方法。通过对这三种方法进行对比,分析其研究成果,并对不同方法的优缺点进行归纳总结,介绍相关数据集和评价指标及应用场景,对情感分析子任务进行简单概括,发现将来的情感分析问题的研究趋势及应用领域,并为研究者在相关领域方面提供一定的帮助和指导。

    相关文章 | 多维度评价
    14. 改进TEB算法的局部路径规划算法研究
    代婉玉, 张丽娟, 吴佳峰, 马向华
    计算机工程与应用    2022, 58 (8): 283-288.   DOI: 10.3778/j.issn.1002-8331.2108-0290
    摘要645)      PDF(pc) (878KB)(124)    收藏
    在复杂动态环境中用传统TEB(time elastic band)算法规划路径时,会出现速度控制量不平滑导致的路径震荡、给机器人带来较大冲击和易发生碰撞。针对以上问题对传统TEB算法进行改进,对检测到的不规则障碍物膨胀化处理并进行区域分级策略,优先考虑安全区域的行驶路线,使机器人在复杂环境中更加安全平稳地运行。在算法中加入障碍物距离对速度的约束,能有效降低机器人靠近障碍物后因速度跳变导致的路径行驶过程的震荡幅度和机器人受到的冲击,以保障机器人运行时的安全。通过在ROS环境中的大量对比仿真,表明在复杂动态环境中改进后TEB算法规划的路径更安全平滑,能有效减少机器人受到的冲击。
    参考文献 | 相关文章 | 多维度评价
    15. 基于深度学习的医学图像配准技术研究进展
    郭艳芬,崔喆,杨智鹏,彭静,胡金蓉
    计算机工程与应用    2021, 57 (15): 1-8.   DOI: 10.3778/j.issn.1002-8331.2101-0281
    摘要629)      PDF(pc) (681KB)(583)    收藏

    医学图像配准技术对于病灶检测、临床诊断、手术规划,疗效评估等有着广泛的应用价值。系统性地总结了基于深度学习的配准算法,从深度迭代、全监督、弱监督到无监督学习的研究发展趋势,分析了各种方法的优势与局限。总体来看,无论是对数据的要求、配准精度,还是计算效率,无监督学习因其不依赖金标准和解剖标签,采用端到端的网络配准框架就可以自动执行需要的任务等优势成为研究的主流方向。然而,基于无监督学习的医学图像配准方法在医学图像领域的可解释性、跨模态多样性和可重复可扩展性方面同样面临着一些研究难点和挑战,这为将来实现更精准的医学图像配准方法指明了研究方向。

    相关文章 | 多维度评价
    16. 基于自编码器的深度聚类算法综述
    陶文彬, 钱育蓉, 张伊扬, 马恒志, 冷洪勇, 马梦楠
    计算机工程与应用    2022, 58 (18): 16-25.   DOI: 10.3778/j.issn.1002-8331.2204-0049
    摘要626)      PDF(pc) (724KB)(210)    收藏
    聚类分析作为一种常见的分析方法,广泛应用于各种场景。随着机器学习技术的发展,深度聚类算法也成了当下研究的热点,基于自编码器的深度聚类算法是其中的代表算法。为了及时了解掌握基于自编码器的深度聚类算法的发展,介绍了四种自编码器的模型,对近些年代表性的算法依照自编码器的结构进行了分类。在MNIST、USPS、Fashion-MNIST数据集上,针对传统聚类算法和基于自编码器的深度聚类算法进行了实验对比、分析,最后对基于自编码器的深度聚类算法目前存在的问题进行了总结,展望了深度聚类算法的研究方向。
    参考文献 | 相关文章 | 多维度评价
    17. 改进U-Net的新冠肺炎图像分割方法
    宋瑶,刘俊
    计算机工程与应用    2021, 57 (19): 243-251.   DOI: 10.3778/j.issn.1002-8331.2010-0207
    摘要612)      PDF(pc) (915KB)(266)    收藏

    新型冠状病毒肺炎(COVID-19)大流行疾病正在全球范围内蔓延。计算机断层扫描(CT)影像技术,在抗击全球 COVID-19 的斗争中起着至关重要的作用,诊断新冠肺炎时,如果能够从CT图像中自动准确分割出新冠肺炎病灶区域,将有助于医生进行更准确和快速的诊断。针对新冠肺炎病灶分割问题,提出基于U-Net改进模型的自动分割方法。在编码器中运用了在 ImageNet 上预训练好的 EfficientNet-B0网络,对有效信息进行特征提取。在解码器中将传统的上采样操作换成DUpsampling结构,以此来充分获取病灶边缘的细节特征信息,最后通过模型快照的集成提高分割的精度。在公开数据集上的实验结果表明,所提算法的准确率、召回率和Dice系数分别为84.24%、80.43%和85.12%,与其他的语义分割算法相比,该方法能有效分割新冠肺炎病灶区域,具有良好的分割性能。

    参考文献 | 相关文章 | 多维度评价
    18. 深度强化学习算法在智能军事决策中的应用
    况立群,李思远,冯利,韩燮,徐清宇
    计算机工程与应用    2021, 57 (20): 271-278.   DOI: 10.3778/j.issn.1002-8331.2104-0114
    摘要588)      PDF(pc) (1223KB)(387)    收藏

    深度强化学习算法能够很好地实现离散化的决策行为,但是难以运用于高度复杂且行为连续的现代战场环境,同时多智能体环境下算法难以收敛。针对这些问题,提出了一种改进的深度确定策略梯度(DDPG)算法,该算法引入了基于优先级的经验重放技术和单训练模式,以提高算法收敛速度;同时算法中还设计了一种混合双噪声的探索策略,从而实现复杂且连续的军事决策控制行为。采用Unity开发了基于改进DDPG算法的智能军事决策仿真平台,搭建了蓝军步兵进攻红军军事基地的仿真环境,模拟多智能体的作战训练。实验结果显示,该算法能够驱动多作战智能体完成战术机动,实现绕过障碍物抵达优势区域进行射击等战术行为,算法拥有更快的收敛速度和更好的稳定性,可得到更高的回合奖励,达到了提高智能军事决策效率的目的。

    参考文献 | 相关文章 | 多维度评价
    19. 多智能体博弈强化学习研究综述
    王军,曹雷,陈希亮,赖俊,章乐贵
    计算机工程与应用    2021, 57 (21): 1-13.   DOI: 10.3778/j.issn.1002-8331.2104-0432
    摘要587)      PDF(pc) (779KB)(689)    收藏

    使用深度强化学习解决单智能体任务已经取得了突破性的进展。由于多智能体系统的复杂性,普通算法无法解决其主要难点。同时,由于智能体数量增加,将最大化单个智能体的累积回报的期望值作为学习目标往往无法收敛,某些特殊的收敛点也不满足策略的合理性。对于不存在最优解的实际问题,强化学习算法更是束手无策,将博弈理论引入强化学习可以很好地解决智能体的相互关系,可以解释收敛点对应策略的合理性,更重要的是可以用均衡解来替代最优解以求得相对有效的策略。因此,从博弈论的角度梳理近年来出现的强化学习算法,总结当前博弈强化学习算法的重难点,并给出可能解决上述重难点的几个突破方向。

    参考文献 | 相关文章 | 多维度评价
    20. 迁移学习方法在医学图像领域的应用综述
    高爽,徐巧枝
    计算机工程与应用    2021, 57 (24): 39-50.   DOI: 10.3778/j.issn.1002-8331.2107-0300
    摘要587)      PDF(pc) (896KB)(758)    收藏

    深度学习技术发展迅速,在医学图像处理领域取得了显著成果。但是由于医学图像样本少,标注困难,使得深度学习的效果远未达到预期。近年,利用迁移学习方法缓解医学图像样本不足的问题,提高深度学习技术在医学图像领域的效果,成为了研究热点之一。介绍了迁移学习方法的基本概念、类型、常用策略及模型,根据迁移学习方法的类型,对当前医学图像领域具有代表性的相关研究进行了梳理与小结,对该领域的未来发展进行了总结和展望。

    参考文献 | 相关文章 | 多维度评价
    21. 深度学习在自然语言处理领域的研究进展
    江洋洋,金伯,张宝昌
    计算机工程与应用    2021, 57 (22): 1-14.   DOI: 10.3778/j.issn.1002-8331.2106-0166
    摘要568)      PDF(pc) (1781KB)(153)    收藏

    通过定量与定性相结合的方式全面分析了深度学习在自然语言处理领域的研究情况。采用CiteSpace和VOSviewer对深度学习在自然语言处理领域的研究国家、机构、期刊分布、关键词共现、共被引网络聚类及时间轴视图等进行知识图谱绘制,理清研究脉络。通过深入挖掘领域内的重要文献,总结深度学习在自然语言处理领域的研究趋势、存在的主要问题或发展瓶颈,并给出相应的解决办法与思路。对于如何跟踪深度学习在自然语言处理领域的研究成果给出建议,为该领域的后续研究与发展提供参考。

    参考文献 | 相关文章 | 多维度评价
    22. 生成对抗网络及其应用研究综述
    魏富强,古兰拜尔·吐尔洪,买日旦·吾守尔
    计算机工程与应用    2021, 57 (19): 18-31.   DOI: 10.3778/j.issn.1002-8331.2104-0248
    摘要565)      PDF(pc) (1078KB)(1085)    收藏

    生成对抗网络的理论研究与应用不断获得成功,已经成为当前深度学习领域研究的热点之一。对生成对抗网络理论及其应用从模型的类型、评价标准和理论研究进展等方面进行系统的综述:分别分析基于显式密度和基于隐式密度的生成模型的优缺点;总结生成对抗网络的评价标准,解读各标准之间的关系,并从应用层面介绍生成对抗网络在图像及其他领域中的研究进展,即通过图像转换、图像生成、图像修复、视频生成、文本生成及图像超分辨率等的应用;从模型的结构表示、训练控制、性能稳定以及评价标准等角度分析生成对抗网络的理论研究进展。研究讨论生成对抗网络的挑战,展望未来可能存在的发展方向。

    参考文献 | 相关文章 | 多维度评价
    23. 零样本学习综述
    王泽深,杨云,向鸿鑫,柳青
    计算机工程与应用    2021, 57 (19): 1-17.   DOI: 10.3778/j.issn.1002-8331.2106-0133
    摘要556)      PDF(pc) (1267KB)(369)    收藏

    尽管自深度学习发展以来,减少大量人工标记样本的需求使得零样本学习取得了不错的进展,以至于已经拥有比较完善的理论体系。但是对于零样本学习应用的研究寥寥无几,如何有效地对应用领域进行梳理是现阶段急需解决的问题。对零样本的理论体系进行介绍,通过一个例子引出零样本学习的定义,继而与广义零样本、监督学习比较,再而列举4个关键问题以及现有的解决方案,给出文本、图像、视频三方面常用的数据集;按照关键技术(属性、嵌入以及生成模型)出现时间顺序,对13个典型模型如何进行零样本学习展开描述,并对优点、缺点、创新点、挑选数据集以及表现进行总结;从词、图像、视频3个维度详细介绍了零样本学习在各个领域的应用;提出了零样本学习过程中出现的挑战并给出了对应的潜在研究方向。

    参考文献 | 相关文章 | 多维度评价
    24. 融合U-Net及MobileNet-V2的快速语义分割网络
    兰天翔,向子彧,刘名果,陈凯
    计算机工程与应用    2021, 57 (17): 175-180.   DOI: 10.3778/j.issn.1002-8331.2005-0278
    摘要548)      PDF(pc) (1156KB)(194)    收藏

    传统U-Net网络模型大,处理图片速度慢,难以适应工业生产中实时的需求。针对该问题,设计并实现了一个轻量级全卷积语义分割网络LU-Net。LU-Net网络以U-Net框架为主体,结合MobileNet-V2的思想,利用深度可分离卷积参数少、计算量小的特点轻量化网络模型。网络综合利用bottleneck模块与普通卷积的优点,并高效利用了高层特征,在保持精度的同时,大幅缩短了分割所需时间。经公开数据集DRIVE及自制凹陷字符数据集上实验的验证,相较于原U-Net网络模型,提出的LU-Net模型参数量缩小至0.59×106,为原模型的1.9%,运行速度提高5倍,处理一张360×270图片的平均耗时为25?ms。LU-Net基本满足工业生产对图像实时处理的要求。

    相关文章 | 多维度评价
    25. 无人机航拍图像语义分割研究综述
    程擎,范满,李彦冬,赵远,李诚龙
    计算机工程与应用    2021, 57 (19): 57-69.   DOI: 10.3778/j.issn.1002-8331.2105-0423
    摘要541)      PDF(pc) (926KB)(335)    收藏

    随着无人机技术的快速发展,无人机在研究领域和工业应用方面受到了广泛的关注。图像和视频是无人机感知周围环境的重要途径。图像语义分割是计算机视觉领域的研究热点,在无人驾驶、智能机器人等场景中应用广泛。无人机航拍图像语义分割是在无人机航拍图像的基础上,运用语义分割技术使无人机获得场景目标智能感知能力。介绍了语义分割技术和无人机的应用发展、相关无人机航拍数据集、无人机航拍图像特点和常用语义分割评价指标。针对无人机航拍的特点介绍了相关语义分割方法,包括小目标、模型实时性和多尺度整合等方面。综述无人机语义分割相关应用,包括线检测、农业和建筑物提取等方向,并分析无人机语义分割未来发展趋势和挑战。

    参考文献 | 相关文章 | 多维度评价
    26. 基于深度学习的视觉里程计方法综述
    职恒辉, 尹晨阳, 李慧斌
    计算机工程与应用    2022, 58 (20): 1-15.   DOI: 10.3778/j.issn.1002-8331.2203-0480
    摘要535)      PDF(pc) (904KB)(299)    收藏
    视觉里程计(visual odometry,VO)是处理搭载视觉传感器的移动设备定位问题的一种常用方法,在自动驾驶、移动机器人、AR/VR等领域得到了广泛应用。与传统基于模型的方法相比,基于深度学习的方法可在不需显式计算的情况下从数据中学习高效且鲁棒的特征表达,从而提升其对于光照变化、少纹理等挑战性场景的鲁棒性。简略回顾了基于模型的视觉里程计方法,从监督学习方法、无监督学习方法、模型与学习融合方法、常用数据集、评价指标、模型法与深度学习方法对比分析六个方面全面介绍了基于深度学习的视觉里程计方法。指出了基于深度学习视觉里程计仍存在的问题和未来的发展趋势。
    参考文献 | 相关文章 | 多维度评价
    27. 面向SSL VPN加密流量的识别方法
    王宇航, 姜文刚, 翟江涛, 史正爽
    计算机工程与应用    2022, 58 (1): 143-151.   DOI: 10.3778/j.issn.1002-8331.2007-0544
    摘要512)      PDF(pc) (804KB)(149)    收藏
    SSL VPN流量常常被一些非法应用利用,来绕过防火墙等安全设施的检测。因此,对SSL VPN加密流量的有效识别对网络信息安全具有重要意义。针对此,提出了一种基于Bit级DPI和深度学习的SSL VPN加密流量识别方法,所提方法分为两个步骤:利用Bit级DPI指纹生成技术识别SSL流量,缩小识别范围;再利用基于注意力机制的改进的CNN网络流量识别模型识别SSL VPN流量。该方法不仅有效解决了传统SSL加密流量指纹识别方法存在的漏识别率较高的问题,同时改进后的深度学习模型能提取网络流量中具有非常显著性的细粒度的特征,从而更加有效地捕捉网络流量中存在的依赖性。实验结果表明,该方法较现有的模型对SSL VPN加密流量的识别效果提高了6%以上。
    参考文献 | 相关文章 | 多维度评价
    28. 基于Pearson特征选择的随机森林模型股票价格预测
    闫政旭,秦超,宋刚
    计算机工程与应用    2021, 57 (15): 286-296.   DOI: 10.3778/j.issn.1002-8331.2011-0419
    摘要509)      PDF(pc) (2026KB)(247)    收藏

    为了能够更好地预测股票的走向趋势,解决在大量特征和大数据下预测精度低的问题,在随机森林的基础上提出了一种基于Pearson系数的随机森林新的组合模型方法。利用Pearson系数进行相关性检验删除无关特征;使用改进的网格搜索法对决策树参数调优;利用随机森林将剩余特征进行建模回归预测,并得出最终结论。实验结果表明:改进后的随机森林在预测值的平均绝对误差(MAE)、均方误差(MSE)都得到了较大的提高。其中今世缘改进后的随机森林比传统随机森林的MSE值降低了56%,MAE值降低了37.3%,其他两只股票预测效果也均得到提高。新的组合模型,可以实现对股票价格的短期预测回归,并且能够降低噪声对股票价格预测的影响。该研究为更好地预测股票价格提供了有效证据并为投资者提供了对股票影响因素的选择。

    相关文章 | 多维度评价
    29. 基于改进YOLOv5的目标检测算法研究
    邱天衡, 王玲, 王鹏, 白燕娥
    计算机工程与应用    2022, 58 (13): 63-73.   DOI: 10.3778/j.issn.1002-8331.2202-0093
    摘要459)      PDF(pc) (1109KB)(272)    收藏
    YOLOv5是目前单阶段目标检测性能较好的算法,但对目标边界回归的精确度不高,难以适用对预测框交并比要求较高的场景。基于YOLOv5算法,提出一种对硬件要求低、模型收敛速度快、目标框准确率高的新模型YOLO-G。改进特征金字塔结构(FPN),采用跨层级联的方式融合更多的特征,一定程度上防止了浅层语义信息的丢失,同时加深金字塔深度,对应增加检测层,使各种锚框的铺设间隔更加合理;其次把并行模式的注意力机制融入到网络结构中,赋予空间注意力模块和通道注意力模块相同的优先级,以加权融合的方式提取注意力信息,使网络可根据对空间和通道注意力的关注程度得到混合域注意力;通过降低网络的参数量和计算量对网络进行轻量化处理,防止因模型复杂度提升造成实时性能的损失。使用PASCAL VOC的2007、2012两个数据集来验证算法的有效性,YOLO-G比YOLOv5s的参数量减少了4.7%,计算量减少了47.9%,而mAP@0.5提高了3.1个百分点,mAP@0.5:0.95提高了5.6个百分点。
    参考文献 | 相关文章 | 多维度评价
    30. 基于Transformer的单通道语音增强模型综述
    范君怡, 杨吉斌, 张雄伟, 郑昌艳
    计算机工程与应用    2022, 58 (12): 25-36.   DOI: 10.3778/j.issn.1002-8331.2201-0371
    摘要456)      PDF(pc) (1155KB)(183)    收藏
    深度学习可以有效地解决带噪语音信号与干净语音信号之间复杂的映射问题,改善单通道语音增强的质量,但是增强语音的质量依然不理想。Transformer在语音信号处理领域中已得到了广泛应用,由于集成了多头注意力机制,可以更好地关注语音的长时相关性,该模型可以进一步改善语音增强效果。基于此,回顾了基于深度学习的语音增强模型,归纳了Transformer模型及其内部结构,从不同实现结构出发对基于Transformer的语音增强模型分类,详细分析了几种实例模型。并在常用数据集上对比了Transformer单通道语音增强的性能,分析了它们的优缺点。对相关研究工作的不足进行了总结,并对未来发展进行展望。
    参考文献 | 相关文章 | 多维度评价
    31. 深度学习驱动的知识追踪研究进展综述
    梁琨,任依梦,尚余虎,张翼英,王聪
    计算机工程与应用    2021, 57 (21): 41-58.   DOI: 10.3778/j.issn.1002-8331.2106-0552
    摘要442)      PDF(pc) (920KB)(327)    收藏

    随着教育信息化程度的不断加深,以预测学生知识状态为目标的知识追踪正成为个性化教育中一项重要且富有挑战性的任务。知识追踪作为一项教育数据挖掘的时间序列任务,与深度学习模型强大的特征提取和建模能力相结合,在处理顺序任务时具有得天独厚的优势。为此,简要分析传统知识追踪模型的特点及局限性,以深度知识追踪发展历程为主线,总结基于循环神经网络、记忆增强神经网络、图神经网络的知识追踪模型及其改进模型,并对该领域的已有模型按照方法策略归类整理。同时梳理了可供研究者使用的公开数据集和模型评估指标,比较和分析不同建模方法的特点。对基于深度学习的知识追踪的未来发展方向进行探讨和展望,奠定进一步深入基于深度知识追踪研究的基础。

    参考文献 | 相关文章 | 多维度评价
    32. 融合改进A*与DWA算法的机器人动态路径规划
    刘建娟,薛礼啟,张会娟,刘忠璞
    计算机工程与应用    2021, 57 (15): 73-81.   DOI: 10.3778/j.issn.1002-8331.2103-0525
    摘要438)      PDF(pc) (1452KB)(562)    收藏

    传统A*算法是移动机器人全局路径规划的常用算法之一,但是算法搜索效率低、规划路径转折点多、面对复杂环境中随机出现的动态障碍物无法实现动态路径规划。针对这些问题,在考虑全局最优的基础上将改进A*与DWA算法融合,量化环境中的障碍物信息,根据此信息调节A*算法启发函数的权重,提高算法的效率和灵活性。基于Floyd算法思想设计路径节点优化算法,删除冗余节点,减少转折,提高路径平滑度。基于全局最优设计DWA算法的动态窗口评价函数,用于区分已知障碍物和未知动态、静态障碍物,提取改进A*算法规划路径的关键点作为DWA算法的临时目标点,在全局最优的基础上实现了改进A*与DWA算法融合。实验结果表明,在复杂环境中,融合算法规划路径既能保证全局最优,又能及时有效地躲避环境中出现的动静态障碍物,实现复杂环境中的动态路径规划。

    相关文章 | 多维度评价
    33. 基于弱监督学习的目标检测研究进展
    杨辉,权冀川,梁新宇,王中伟
    计算机工程与应用    2021, 57 (16): 40-49.   DOI: 10.3778/j.issn.1002-8331.2103-0306
    摘要420)      PDF(pc) (633KB)(423)    收藏

    随着卷积神经网络(Convolutional Neural Network,CNN)的不断发展,目标检测作为计算机视觉中最基本的技术,已取得了令人瞩目的进展。介绍了强监督目标检测算法对数据集标注精度要求高的现状。对基于弱监督学习的目标检测算法进行研究,按照不同的特征处理方法将该算法归为四类,并分析比较了各类算法的优缺点。通过实验比较了各类基于弱监督学习的目标检测算法的检测精度,并将其与主流的强监督目标检测算法进行了比较。展望了基于弱监督学习的目标检测算法未来的研究热点。

    相关文章 | 多维度评价
    34. 图像超分辨率重建算法综述
    孙菁阳,陈凤东,韩越越,吴煜雯,甘雨,刘国栋
    计算机工程与应用    2021, 57 (17): 1-9.   DOI: 10.3778/j.issn.1002-8331.2103-0556
    摘要412)      PDF(pc) (1343KB)(349)    收藏

    图像超分辨率重建旨在从低分辨率图像恢复出高分辨率清晰图像。阐述了典型图像超分辨率重建方法的思想,从上采样位置和上采样方法、学习策略、损失函数等维度,对典型和最新的基于深度学习的图像超分辨率重建算法进行了评述,分析了最新的发展现状,并对未来发展趋势进行了展望。

    相关文章 | 多维度评价
    35. TLS协议恶意加密流量识别研究综述
    康鹏, 杨文忠, 马红桥
    计算机工程与应用    2022, 58 (12): 1-11.   DOI: 10.3778/j.issn.1002-8331.2110-0029
    摘要400)      PDF(pc) (747KB)(234)    收藏
    随着5G时代的来临,以及公众对互联网的认识日益加深,公众对个人隐私的保护也越来越重视。由于数据加密过程中存在着恶意通信,为确保数据安全,维护社会国家利益,加密流量识别的研究工作尤为重要。针对TLS流量详细的阐述,分析了早期识别方法的改进技术,包括常见的流量检测技术、DPI检测技术、代理技术以及证书检测技术。介绍了选取不同TLS加密流量特征的机器学习模型,以及无需特征选择的深度学习模型等诸多最新研究成果。对相关研究工作的不足进行总结,并对未来技术的研究工作和发展趋势进行了展望。
    参考文献 | 相关文章 | 多维度评价
    36. 面向文本分类的多头注意力池化RCNN模型
    翟一鸣,王斌君,周枝凝,仝鑫
    计算机工程与应用    2021, 57 (12): 155-160.   DOI: 10.3778/j.issn.1002-8331.2003-0276
    摘要389)      PDF(pc) (919KB)(211)    收藏

    针对经典循环卷积神经网络(RCNN)在池化层采用的最大池化策略较为单一,会忽略除最突出特征外的其他特征,影响分类精度的问题,提出基于多头注意力池化的循环卷积神经网络(MHAP-RCNN)模型。多头注意力池化可以充分考虑各特征对分类的贡献,且能在训练过程中动态优化,有效缓解最大池化的单一性问题。在三个公开的文本分类数据集上进行实验,结果表明与经典RCNN及其他各模型相比,提出的模型具有更好的文本分类性能。

    相关文章 | 多维度评价
    37. 生成对抗网络在医学图像处理中的应用
    李祥霞,谢娴,李彬,尹华,许波,郑心炜
    计算机工程与应用    2021, 57 (18): 24-37.   DOI: 10.3778/j.issn.1002-8331.2104-0176
    摘要386)      PDF(pc) (726KB)(269)    收藏

    生成对抗网络(Generative Adversarial Nets,GANs)模型可以无监督学习到更丰富的数据信息,其包括生成模型与判别模型,凭借二者之间的对抗提高性能。针对传统GANs存在着梯度消失、模式崩溃及无法生成离散数据分布等问题,已经提出了大量的变体模型。介绍了生成对抗网络模型的理论和组成结构;介绍了几种典型的变体模型,重点介绍了生成对抗网络模型在图像生成、图像分割、图像分类、目标检测及图像超分辨率重建应用领域上的研究进展及现状。在研究现状和问题基础上进行了深入分析,进一步总结和探讨了GANs模型在医学图像处理领域中未来发展的趋势和所面临的挑战。

    相关文章 | 多维度评价
    38. 跨模态检索技术研究综述
    徐文婉, 周小平, 王佳
    计算机工程与应用    2022, 58 (23): 12-23.   DOI: 10.3778/j.issn.1002-8331.2205-0160
    摘要375)      PDF(pc) (769KB)(131)    收藏
    跨模态检索可以通过一种模态检索出其他模态的信息,已经成为大数据时代的研究热点。研究者基于实值表示和二进制表示两种方法来减小不同模态信息的语义差距并进行有效的相似度对比,但仍会有检索效率低或信息丢失的问题。目前,如何进一步提高检索效率和信息利用率是跨模态检索研究面临的关键挑战。介绍了跨模态检索研究中基于实值表示和二进制表示两种方法的发展现状;分析对比了包含两种表示技术下以建模技术和相似性对比为主线的五种跨模态检索方法:子空间学习、主题统计模型学习、深度学习、传统哈希和深度哈希;对最新的多模态数据集进行总结,为相关的研究和工程人员提供有价值的参考资料;分析了跨模态检索面临的挑战并指出了该领域未来研究方向。
    参考文献 | 相关文章 | 多维度评价
    39. 图异常检测在金融反欺诈中的应用研究进展
    刘华玲, 刘雅欣, 许珺怡, 陈尚辉, 乔梁
    计算机工程与应用    2022, 58 (22): 41-53.   DOI: 10.3778/j.issn.1002-8331.2203-0233
    摘要373)      PDF(pc) (1848KB)(287)    收藏
    随着数字金融的快速发展,欺诈呈现出智能化、产业化以及强隐蔽性等新特点,传统的专家规则和机器学习方法局限性日益显现。图异常检测技术对关联信息具有强大的处理能力,为金融反欺诈提供了新的思路。简要介绍了图异常检测的发展历程和优势;着重从个体反欺诈和群体反欺诈两个视角,将图异常检测划分为基于特征、基于邻近性、基于图表示学习和基于社区划分的个体欺诈检测,以及基于稠密子图、基于稠密子张量和基于深层网络结构的团伙欺诈检测,并对每类技术的基本思想、优缺点、研究进展和典型应用进行对比分析;同时归纳总结了常用的数据集和评价指标,并给出图异常检测在金融反欺诈中的发展前景和研究方向。
    参考文献 | 相关文章 | 多维度评价
    40. 基于BERT的中文多关系抽取方法研究
    黄梅根,刘佳乐,刘川
    计算机工程与应用    2021, 57 (21): 234-240.   DOI: 10.3778/j.issn.1002-8331.2011-0199
    摘要373)      PDF(pc) (973KB)(188)    收藏

    构建三元组时在文本句子中抽取多个三元组的研究较少,且大多基于英文语境,为此提出了一种基于BERT的中文多关系抽取模型BCMRE,它由关系分类与元素抽取两个任务模型串联组成。BCMRE通过关系分类任务预测出可能包含的关系,将预测关系编码融合到词向量中,对每一种关系复制出一个实例,再输入到元素抽取任务通过命名实体识别预测三元组。BCMRE针对两项任务的特点加入不同前置模型;设计词向量优化BERT处理中文时以字为单位的缺点;设计不同的损失函数使模型效果更好;利用BERT的多头与自注意力机制充分提取特征完成三元组的抽取。BCMRE通过实验与其他模型,以及更换不同的前置模型进行对比,在F1的评估下取得了相对较好的结果,证明了模型可以有效性提高抽取多关系三元组的效果。

    参考文献 | 相关文章 | 多维度评价