[1] 刘志林, 王磊, 丁银平, 等. 贺兰山东麓葡萄酒生产集群格局演变与驱动机制[J]. 经济地理, 2023, 43(8): 165-176.
LIU Z L, WANG L, DING Y P, et al. Spatiotemporal evolution of wine production clusters and its driving mechanism in the east of Helan Mountains[J]. Economic Geography, 2023, 43(8): 165-176.
[2] 黄天柱, 张欣悦, 薛春莉. 葡萄酒全产业链深度融合国际比较分析[J]. 中国酿造, 2023, 42(9): 240-245.
HUANG T Z, ZHANG X Y, XUE C L. International comparative analysis of the deep integration of the whole wine industry chain[J]. China Brewing, 2023, 42(9): 240-245.
[3] YANG X, CHEN A K, POURNEJATIAN N, et al. A large language model for electronic health records[J]. NPJ Digital Medicine, 2022, 5: 194.
[4] UBAH A E, ONAKPOJERUO E P, AJAMU J, et al. A review of artificial intelligence in education[C]//Proceedings of the 2022 International Conference on Artificial Intelligence of Things and Crowdsensing. Piscataway: IEEE, 2023: 38-45.
[5] 江双五, 张嘉玮, 华连生, 等. 基于大模型检索增强生成的气象数据库问答模型实现[J]. 计算机工程与应用, 2025, 61(5): 113-121.
JIANG S W, ZHANG J W, HUA L S, et al. Implementation of meteorological database question-answering based on large-scale model retrieval-augmentation generation[J]. Computer Engineering and Applications, 2025, 61(5): 113-121.
[6] CHARI S, ACHARYA P, GRUEN D M, et al. Informing clinical assessment by contextualizing post-hoc explanations of risk prediction models in type-2 diabetes[J]. Artificial Intelligence in Medicine, 2023, 137: 102498.
[7] ROUMELIOTIS K I, TSELIKAS N D. ChatGPT and open-AI models: a preliminary review[J]. Future Internet, 2023, 15(6): 192.
[8] DU Z X, QIAN Y J, LIU X, et al. GLM: general language model pretraining with autoregressive blank infilling[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Strou-dsburg: ACL, 2022: 320-335.
[9] JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514.
[10] PAN J J, WANG J G, LI G L. Survey of vector database man-agement systems[J]. The VLDB Journal, 2024, 33(5): 1591-1615.
[11] TANGMUNCHITTHAM E, PIROMSOPA K. An analysis of Python serialization towards distributed systems[C]//Proceedings of the 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Piscataway: IEEE, 2022: 1-4.
[12] DEHGHAN M, ALOMRANI M, BAGGA S, et al. EWEK-QA: enhanced web and efficient knowledge graph retrieval for citation-based question answering systems[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stro-udsburg: ACL, 2024: 14169-14187.
[13] LEI Y B, DING L, CAO Y, et al. Unsupervised dense retrieval with relevance-aware contrastive pre-training[C]//Findings of the Association for Computational Linguistics: ACL 2023. Stroudsburg: ACL, 2023: 10932-10940.
[14] MA X G, FUN H, YIN X S, et al. Enhancing sparse retrieval via unsupervised learning[C]//Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region. New York: ACM, 2023: 150-157.
[15] DING N, QIN Y J, YANG G, et al. Parameter-efficient fine-tuning of large-scale pre-trained language models[J]. Nature Machine Intelligence, 2023, 5(3): 220-235.
[16] SUN Y, WANG S H, FENG S K, et al. ERNIE 3. 0: large-scale knowledge enhanced pre-training for language understanding and generation[J]. arXiv:2107.02137, 2017.
[17] BAI J Z, BAI S, CHU Y F, et al. Qwen technical report[J]. arXiv:2309.16609, 2023.
[18] XIAO J F, CHEN Y C, OU Y M, et al. Baichuan2-sum: ins-truction finetune Baichuan2-7B model for dialogue summarization[C]//Proceedings of the 2024 International Joint Conference on Neural Networks. Piscataway: IEEE, 2024: 1-8.
[19] 李凤英, 何晓蝶, 董荣胜. 融合语义信息的知识图谱多跳推理模型[J]. 模式识别与人工智能, 2022, 35(11): 1025-1032.
LI F Y, HE X D, DONG R S. Multi-hop inference model for knowledge graphs incorporating semantic information[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(11): 1025-1032.
[20] 张元鸣, 姬琦, 徐雪松, 等. 基于知识图谱关系路径的多跳智能问答模型研究[J]. 电子学报, 2023, 51(11): 3092-3099.
ZHANG Y M, JI Q, XU X S, et al. Knowledge graph relation path network for multi-hop intelligent question answering[J]. Acta Electronica Sinica, 2023, 51(11): 3092-3099.
[21] FORMICA A, MELE I, TAGLINO F. A template-based approach for question answering over knowledge bases[J]. Knowledge and Information Systems, 2024, 66(1): 453-479.
[22] LAMANNA J A, MANGAN S A, ALONSO A, et al. Plant diversity increases with the strength of negative density dependence at the global scale[J]. Science, 2017, 356(6345): 1389-1392.
[23] CHEN Y R, LI H Y, HUA Y C, et al. Formal query building with query structure prediction for complex question ans-wering over knowledge base[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 3751-3758.
[24] GU Y, PAHUJA V, CHENG G, et al. Knowledge base question answering: a semantic parsing perspective[C]//Proceedings of the 4th Conference on Automated Knowledge Base Construction, 2022: 80-95.
[25] 高留杰, 赵文, 张君福, 等. G2S: 基于语义块的知识图谱问答语义解析[J]. 电子学报, 2021, 49(6): 1132-1141.
GAO L J, ZHAO W, ZHANG J F, et al. G2S: semantic segment based semantic parsing for question answering over knowledge graph[J]. Acta Electronica Sinica, 2021, 49(6): 1132-1141.
[26] ABDELAZIZ I, RAVISHANKAR S, KAPANIPATHI P, et al. A semantic parsing and reasoning-based approach to knowledge base question answering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(18): 15985-15987.
[27] NI J J, YOUNG T, PANDELEA V, et al. Recent advances in deep learning based dialogue systems: a systematic survey[J]. Artificial Intelligence Review, 2023, 56(4): 3055-3155.
[28] YASUNAGA M, REN H Y, BOSSELUT A, et al. QA-GNN: reasoning with language models and knowledge graphs for question answering[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 535-546.
[29] AHMADIAN M, AHMADI M, AHMADIAN S. A reliable deep representation learning to improve trust-aware recommendation systems[J]. Expert Systems with Applications, 2022, 197: 116697.
[30] LAN Y S, HE G L, JIANG J H, et al. A survey on complex knowledge base question answering: methods, challenges and solutions[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021: 4483-4491.
[31] ZHOU X H, SUN Z Y, LI G L. DB-GPT: large language model meets database[J]. Data Science and Engineering, 2024, 9(1): 102-111.
[32] XIAO S T, LIU Z, ZHANG P T, et al. C-pack: packed res-ources for general Chinese embeddings[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 641-649.
[33] YU Y, YANG C H, KOLEHMAINEN J, et al. Low-rank adaptation of large language model rescoring for parameter-efficient speech recognition[C]//Proceedings of the 2023 IEEE Automatic Speech Recognition and Understanding Workshop. Piscataway: IEEE, 2024: 1-8.
[34] ZHENG Y W, ZHANG R C, ZHANG J H, et al. LlamaFactory: unified efficient fine-tuning of 100+ language models[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations). Stroudsburg: ACL, 2024: 400-410.
[35] ES S, JAMES J, ESPINOSA ANKE L, et al. RAGAs: automated evaluation of retrieval augmented generation[C]//Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations. Stroudsburg: ACL, 2024: 150-158.
[36] ZHANG T Y, KISHORE V, WU F, et al. BERTScore: evaluating text generation with BERT[C]//Proceedings of the 8th International Conference on Learning Representations, 2020: 1-43. |