计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 304-319.DOI: 10.3778/j.issn.1002-8331.2411-0470

• 工程与应用 • 上一篇    下一篇

葡萄酒领域知识多路径检索增强生成方法优化研究

杨文跃,于千城,王启明,穆洪锐,周诚辰   

  1. 1.北方民族大学 计算机科学与工程学院,银川 750021
    2.宁夏工商职业技术学院 信息网络中心,银川 750021
    3.图形图像国家民委重点实验室,银川 750021
  • 出版日期:2025-11-15 发布日期:2025-11-14

Optimization Research on Multi-Path Retrieval-Augmented Generation Method for Wine Domain Knowledge

YANG Wenyue, YU Qiancheng, WANG Qiming, MU Hongrui, ZHOU Chengchen   

  1. 1.School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
    2.Information Network Center, Ningxia Vocational Technical College of Industry and Commerce, Yinchuan 750021, China
    3.The Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission, Yinchuan 750021, China
  • Online:2025-11-15 Published:2025-11-14

摘要: 在葡萄酒领域,设计专业的领域知识问答系统对于提升产区种植户、产业工人、酿酒师和品酒师的技术技能,以及助力整个产业的数字化转型具有重要意义。鉴于葡萄酒领域专业术语繁多、工艺细节庞杂、酒品分类多样、年份差异敏感以及酒庄文化异彩纷呈的特点,现有的智能问答系统往往因为信息提取不全和检索精度不足,导致回答的质量和准确性无法满足需求。提出了融合知识图谱、向量数据库和PKL文件库各自优势以构建葡萄酒领域知识库的方法,并探索了葡萄酒领域知识多路径检索增强生成方法(multi-path retrieval-augmented generation, MPRAG),通过并行检索不同路径,以提升检索结果的精准度和召回率。实验结果表明,MPRAG方法较目前多个开源RAG系统,在检索精准度和召回率指标上均提升了约20个百分点,可为葡萄酒领域的技术支持与人才培训提供支撑。

关键词: 多路径检索增强生成(MPRAG), 智能问答系统, 低秩适应(LoRA), 葡萄酒领域知识

Abstract: In the domain of wine, designing a specialized domain knowledge Q&A system is of great significance for improving the technical skills of vineyard growers, industry workers, winemakers, and sommeliers, as well as for supporting the digital transformation of the entire industry. Given the complexity of the wine domain, which involves a wide range of specialized terminology, intricate production processes, diverse wine classifications, sensitive vintage variations, and rich winery cultures, existing AI-powered Q&A systems often fall short due to incomplete information extraction and insufficient retrieval accuracy, failing to meet the quality and accuracy requirements of responses. A method is proposed, which integrates the strengths of knowledge graphs, vector databases, and PKL file libraries to construct a wine domain knowledge base. Additionally, the multi-path retrieval-augmented generation (MPRAG) method for wine domain knowledge is explored, which enhances the precision and recall of retrieval results through parallel retrieval across different paths. Experimental results indicate that the MPRAG method improves both precision and recall by approximately 20 percentage points compared to several existing open-source RAG systems, providing support for technical assistance and talent training in the wine industry.

Key words: multi-path retrieval-augmented generation (MPRAG), AI-powered Q&, A system, low-rank adaptation (LoRA), wine domain knowledge