[1] SHI W S, CAO J, ZHANG Q, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646.
[2] FILHO C P, MARQUES E, CHANG V, et al. A systematic literature review on distributed machine learning in edge computing[J]. Sensors, 2022, 22(7): 2665.
[3] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the International Conference on Artificial Intelligence and Statistics, 2016.
[4] LIN F P, HOSSEINALIPOUR S, MICHELUSI N, et al. Delay-aware hierarchical federated learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(2): 674-688.
[5] HE X, PENG C G, TAN W J. Fast and accurate deep leakage from gradients based on Wasserstein distance[J]. International Journal of Intelligent Systems, 2023, 2023(1): 5510329.
[6] WANG Z B, SONG M K, ZHANG Z F, et al. Beyond inferring class representatives: user-level privacy leakage from federated learning[C]//Proceedings of the 2019 IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 2512-2520.
[7] HU X Y, LI R Q, WANG L C, et al. A data sharing scheme based on federated learning in IoV[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11644-11656.
[8] LIU W T, XU X L, LI D J, et al. Privacy preservation for federated learning with robust aggregation in edge computing[J]. IEEE Internet of Things Journal, 2023, 10(8): 7343-7355.
[9] LI D F, LAI J S, WANG R J, et al. Ubiquitous intelligent federated learning privacy-preserving scheme under edge computing[J]. Future Generation Computer Systems, 2023, 144: 205-218.
[10] PENG Z, XU J L, CHU X W, et al. VFChain: enabling verifiable and auditable federated learning via blockchain systems[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(1): 173-186.
[11] GONG X L, CHEN Y J, WANG Q, et al. Backdoor attacks and defenses in federated learning: state-of-the-art, taxonomy, and future directions[J]. IEEE Wireless Communications, 2023, 30(2): 114-121.
[12] XU G W, LI H W, LIU S, et al. VerifyNet: secure and verifiable federated learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 911-926.
[13] ZHANG X L, FU A M, WANG H Q, et al. A privacy-preserving and verifiable federated learning scheme[C]//Proceedings of the 2020 IEEE International Conference on Communications. Piscataway: IEEE, 2020: 1-6.
[14] YANG Z, ZHOU M, YU H Y, et al. Efficient and secure federated learning with verifiable weighted average aggregation[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(1): 205-222.
[15] ZHANG J L, WANG J Y, ZHAO Y C, et al. An efficient federated learning scheme with differential privacy in mobile edge computing[C]//Proceedings of the 4th International Conference on Machine Learning and Intelligent Communications. Cham: Springer, 2019: 538-550.
[16] YANG W Z, ZHOU Y P, HU M, et al. Gain without pain: offsetting DP-injected noises stealthily in cross-device federated learning[J]. IEEE Internet of Things Journal, 2022, 9(22): 22147-22157.
[17] MA X, ZHANG F G, CHEN X F, et al. Privacy preserving multi-party computation delegation for deep learning in cloud computing[J]. Information Sciences, 2018, 459: 103-116.
[18] FANG C, GUO Y B, WANG N, et al. Highly efficient federated learning with strong privacy preservation in cloud computing[J]. Computers & Security, 2020, 96: 101889.
[19] ZHU H Y, WANG R, JIN Y C, et al. Distributed additive encryption and quantization for privacy preserving federated deep learning[J]. Neurocomputing, 2021, 463: 309-327.
[20] FENG J, YANG L T, ZHU Q, et al. Privacy-preserving tensor decomposition over encrypted data in a federated cloud environment[J]. IEEE Transactions on Dependable and Secure Computing, 2020, 17(4): 857-868.
[21] LIN L, ZHANG X Y. PPVerifier: a privacy-preserving and verifiable federated learning method in cloud-edge collaborative computing environment[J]. IEEE Internet of Things Journal, 2023, 10(10): 8878-8892.
[22] ZHANG Y F, MIAO Y B, LI X H, et al. Efficient privacy-preserving federated learning with improved compressed sensing[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 3316-3326.
[23] GUO X J, LIU Z L, LI J, et al. VeriFL: communication-efficient and fast verifiable aggregation for federated learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1736-1751.
[24] FAN M C, JI K L, ZHANG Z F, et al. Lightweight privacy and security computing for blockchained federated learning in IoT[J]. IEEE Internet of Things Journal, 2023, 10(18): 16048-16060.
[25] REN Y L, LI Y R, FENG G R, et al. Privacy-enhanced and verification-traceable aggregation for federated learning[J]. IEEE Internet of Things Journal, 2022, 9(24): 24933-24948.
[26] ELTARAS T, SABRY F, LABDA W, et al. Efficient verifiable protocol for privacy-preserving aggregation in federated learning[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2977-2990.
[27] LIN J, MIAO Y B, WEI L F, et al. Efficient secure inference scheme in multiparty settings for industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2024, 20(10): 11877-11886.
[28] XIA Y J, LIU Y N, DONG S, et al. SVCA: secure and verifiable chained aggregation for privacy-preserving federated learning[J]. IEEE Internet of Things Journal, 2024, 11(10): 18351-18365.
[29] MILLION E. The hadamard product[EB/OL]. (2007)[2024-07-15]. https://docslib.org/doc/7264262/the-hadamard-product.
[30] EL OUADRHIRI A, ABDELHADI A. Differential privacy for deep and federated learning: a survey[J]. IEEE Access, 2022, 10: 22359-22380.
[31] BATOOL H, ANJUM A, KHAN A, et al. A secure and privacy preserved infrastructure for VANETs based on federated learning with local differential privacy[J]. Information Sciences, 2024, 652: 119717.
[32] MUTHUKRISHNAN G, KALYANI S. Grafting Laplace and Gaussian distributions: a new noise mechanism for differential privacy[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5359-5374.
[33] BONEH D, FRANKLIN M. Identity-based encryption from the Weil pairing[J]. SIAM Journal on Computing, 2003, 32(3): 586-615.
[34] HE C R, LIU G Y, GUO S T, et al. Privacy-preserving and low-latency federated learning in edge computing[J]. IEEE Internet of Things Journal, 2022, 9(20): 20149-20159.
[35] WANG G, ZHOU L, LI Q M, et al. FVFL: a flexible and verifiable privacy-preserving federated learning scheme[J]. IEEE Internet of Things Journal, 2024, 11(13): 23268-23281.
[36] XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[J]. arXiv:1708.07747, 2017.
[37] GONG M G, FENG J L, XIE Y. Privacy-enhanced multi-party deep learning[J]. Neural Networks, 2020, 121: 484-496. |