[1] AK?AY S, KUNDEGORSKI M E, DEVEREUX M, et al. Transfer learning using convolutional neural networks for object classification within X-ray baggage security imagery[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 1057-1061.
[2] WANG B Y, ZHANG L B, WEN L Y, et al. Towards real-world prohibited item detection: a large-scale X-ray benchmark[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 5392-5401.
[3] 郭守向, 张良. Yolo-C: 基于单阶段网络的X光图像违禁品检测[J]. 激光与光电子学进展, 2021, 58(8): 75-84.
GUO S X, ZHANG L. Yolo-C: one-stage network for prohibited items detection within X-ray images[J]. Laser & Optoelectronics Progress, 2021, 58(8): 75-84.
[4] 董乙杉, 李兆鑫, 郭靖圆, 等. 一种改进YOLOv5的X光违禁品检测模型[J]. 激光与光电子学进展, 2023, 60(4): 359-366.
DONG Y S, LI Z X, GUO J Y, et al. Improved YOLOv5 model for X-ray prohibited item detection[J]. Laser & Optoelectronics Progress, 2023, 60(4): 359-366.
[5] 武连全, 楚宪腾, 杨海涛, 等. 基于改进YOLOX的X射线违禁物品检测[J]. 红外技术, 2023, 45(4): 427-435.
WU L Q, CHU X T, YANG H T, et al. X-ray detection of prohibited items based on improved YOLOX[J]. Infrared Technology, 2023, 45(4): 427-435.
[6] SONG B, LI R Q, PAN X G, et al. Improved YOLOv5 detection algorithm of contraband in X-ray security inspection image[C]//Proceedings of the 2022 5th International Conference on Pattern Recognition and Artificial Intelligence. Piscataway: IEEE, 2022: 169-174.
[7] LI Y, ZHANG C S, SUN S Y, et al. X-ray detection of prohibited item method based on dual attention mechanism[J]. Electronics, 2023, 12(18): 3934.
[8] HUANG X N, ZHANG Y P. ScanGuard-YOLO: enhancing X-ray prohibited item detection with significant performance gains[J]. Sensors, 2024, 24(1): 102.
[9] 李松, 亚森江·木沙. 改进YOLOv7的X射线图像违禁品实时检测[J]. 计算机工程与应用, 2023, 59(12): 193-200.
LI S, YASENJIANG Musa. Improved YOLOv7 X-ray image real-time detection of prohibited items[J]. Computer Engineering and Applications, 2023, 59(12): 193-200.
[10] CHEN F, JIN H, LI Q H. Design of security image contraband detection system based on PP-YOLOE+_DCS[C]//Proceedings of the Seventh International Conference on Mechatronics and Intelligent Robotics, 2023: 24.
[11] HAN L, MA C H, LIU Y, et al. SC-YOLOv8: a security check model for the inspection of prohibited items in X-ray images[J]. Electronics, 2023, 12(20): 4208.
[12] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[13] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 764-773.
[14] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[15] MOLCHANOV P, MALLYA A, TYREE S, et al. Importance estimation for neural network pruning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11256-11264.
[16] YANG L R, ZHOU X P, LI X W, et al. Bridging cross-task protocol inconsistency for distillation in dense object detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 17129-17138.
[17] ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9300-9308.
[18] WANG W H, DAI J F, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 14408-14419.
[19] XIONG Y W, LI Z Q, CHEN Y T, et al. Efficient deformable ConvNets: rethinking dynamic and sparse operator for vision applications[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 5652-5661.
[20] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.
[21] FANG G F, MA X Y, SONG M L, et al. DepGraph: towards any structural pruning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 16091-16101.
[22] LEE J, PARK S, MO S, et al. Layer-adaptive sparsity for the magnitude-based pruning[C]//Proceedings of the International Conference on Learning Representations, 2020.
[23] SHU C Y, LIU Y F, GAO J F, et al. Channel-wise knowledge distillation for dense prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 5291-5300.
[24] YANG Z D, LI Z, SHAO M Q, et al. Masked generative distillation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2022: 53-69.
[25] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[26] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[27] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[28] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[29] ZHENG Q H, TIAN X Y, YU Z G, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596.
[30] ZHENG Q H, SAPONARA S, TIAN X Y, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671. |