计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (21): 167-181.DOI: 10.3778/j.issn.1002-8331.2506-0360

• 模式识别与人工智能 • 上一篇    下一篇

一种农机轨迹行为模式识别的时空交互掩码并联网络

张鑫雨,翟卫欣   

  1. 1.中国农业大学,北京 100083 
    2.农业农村部 农机作业监测与大数据应用重点实验室,北京 100083
  • 出版日期:2025-11-01 发布日期:2025-10-31

Spatial-Temporal Interaction Masked Net for Agricultural Machinery Trajectory Operation Mode Identification

ZHANG Xinyu, ZHAI Weixin   

  1. 1.China Agricultural University, Beijing 100083, China
    2.Key Laboratory of Agricultural Machinery Monitoring and Big Data Application, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
  • Online:2025-11-01 Published:2025-10-31

摘要: 农机轨迹行为模式识别是指通过分析农机轨迹的空间结构、边界特征等信息来识别农机的活动场景,并为每个未知轨迹点分配相应语义标签的过程。针对农机轨迹时空依赖关系挖掘不充分、噪声干扰等问题,提出了一种农机轨迹行为模式识别的时空交互掩码网络。设计了时序分块Transformer和空间交叉聚合器两个模块,其中时序分块Transformer模块用于探索农机轨迹内部特征在不同时间节点的交互关系,并通过同步原型策略以进一步增强模型对轨迹特征的上下文理解;而空间交叉聚合器模块通过聚合邻域节点特征来捕捉多个轨迹点之间的空间相关性。此外,为提高模型的泛化能力,设计了双分支掩码学习策略,引入重构分支对模型进行预训练以学习更加通用的轨迹特征表示。为验证所提模型的优越性,在农业农村部农机作业监测与大数据应用重点实验室提供的两种真实农机轨迹数据集上展开了实验。实验结果表明,所提模型在水稻收割机和拖拉机轨迹数据集上分别取得了90.54%和94.17%的准确率,与次优模型相比,其F1分数分别提升了5.15、6.84个百分点。

关键词: 农机轨迹行为模式识别, 时空交互掩码网络, 双分支掩码学习, 时序分块Transformer, 空间交叉聚合器

Abstract: Agricultural machinery trajectory operation mode identification refers to the process of identifying the activity scenarios of agricultural machinery by analyzing the spatial structure, boundary characteristics and other information of agricultural machinery trajectories, and assigning corresponding semantic labels to each unknown trajectory point. Aiming at the problems of insufficient mining of spatiotemporal dependency of agricultural machinery trajectories and noise interference, this paper proposes a spatial-temporal interaction masked net (ST-MaskNet) for agricultural machinery trajectory operation mode identification. This method designs two modules: temporal patch transformer (TPT) and spatial cross aggregator (SCA). The TPT module is used to explore the interactive relationships between internal features of agricultural machinery trajectories at different time nodes and further enhances the model’s contextual understanding of trajectory features through a synchronization prototype (SynProto) strategy. The SCA module captures spatial correlations between multiple trajectory points by aggregating features of neighboring nodes. Furthermore, to improve the generalization abilityof the model, a binary masked learning (BML) strategy is designed, introducing a reconstruction branch to pre-train the model to learn a more general trajectory feature representation. To validate the superiority of the proposed model, experiments are conducted on two real agricultural machinery trajectory datasets provided by the key laboratory of agricultural big data, ministry of agriculture and rural affairs. The experimental results show that ST-MaskNet achieves 90.54% and 94.17% accuracy on the rice harvester and tractor trajectory datasets, respectively, and its F1 score increased by 5.15, 6.84 percentage points, respectively, compared with the second-best model.

Key words: agricultural machinery trajectory operation mode identification, spatial-temporal interaction masked net, binary masked learning, temporal patch Transformer, spatial cross aggregator