[1] 张晓强, 权雷, 李欣悦, 等. 基于半监督学习的农机田-路轨迹分割方法[J]. 农业工程学报, 2025, 41(15): 135-144.
ZHANG X Q, QUAN L, LI X Y, et al. Field-road trajectory segmentation method for agricultural machinery based on semi-supervised learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(15): 135-144.
[2] PAN J W, GUO Z, WU C C, et al. Parameter optimization of the field-road trajectory segmentation model based on the chaos sensing slime mould algorithm[J]. Soft Computing, 2024, 28(19): 11065-11132.
[3] PAN J W, WU C C, ZHAI W X. A hybrid genetic slime mould algorithm for parameter optimization of field-road trajectory segmentation models[J]. Information Processing in Agriculture, 2024, 11(4): 590-602.
[4] 罗天长笑, 翟卫欣. 农机轨迹田路分类的局部方向中心性度量聚类算法[J]. 计算机工程与应用, 2024, 60(23): 303-313.
LUO T C X, ZHAI W X. Clustering algorithm with local direction centrality measurement for agricultural machinery trajectory field-road classification[J]. Computer Engineering and Applications, 2024, 60(23): 303-313.
[5] CHEN C, CAO G Q, ZHANG J L, et al. Dynamic monitoring of harvester working progress based on traveling trajectory and header status[J]. Engenharia Agrícola, 2023, 43(5): e20220196.
[6] LACOUR S, BURGUN C, PERILHON C, et al. A model to assess tractor operational efficiency from bench test data[J]. Journal of Terramechanics, 2014, 54: 1-18.
[7] LEE J W, KIM J S, KIM K U. Computer simulations to maximise fuel efficiency and work performance of agricultural tractors in rotovating and ploughing operations[J]. Biosystems Engineering, 2016, 142: 1-11.
[8] LU E, XU L Z, LI Y M, et al. Modeling of working environment and coverage path planning method of combine harvesters[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(2): 132-137.
[9] SUN J L, WANG Z, DING S H, et al. Adaptive disturbance observer-based fixed time nonsingular terminal sliding mode control for path-tracking of unmanned agricultural tractors[J]. Biosystems Engineering, 2024, 246: 96-109.
[10] SPOONER P G. Minor rural road networks: values, challenges, and opportunities for biodiversity conservation[J]. Nature Conservation, 2015, 11: 129-142.
[11] KEARNEY S P, COOPS N C, SETHI S, et al. Maintaining accurate, current, rural road network data: an extraction and updating routine using RapidEye, participatory GIS and deep learning[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 87: 102031.
[12] 杨丽丽, 王新鑫, 李元博, 等. 基于机器学习的小麦收获机掉头轨迹识别[J]. 农业机械学报, 2023, 54(9): 27-34.
YANG L L, WANG X X, LI Y B, et al. Identifying turning trajectories of wheat harvester based on machine learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(9): 27-34.
[13] 刘卉, 孟志军, 付卫强. 基于GPS轨迹的农机垄间作业重叠与遗漏评价[J]. 农业工程学报, 2012, 28(18): 149-154.
LIU H, MENG Z J, FU W Q. Overlap and skip evaluation for agricultural machinery operation based on GPS track logs[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(18): 149-154.
[14] ZHAI W X, KUANG X R, CHENG X Y, et al. Reconstruction of missing points in agricultural machinery trajectory based on bidirectional adjacent information[J]. Computers and Electronics in Agriculture, 2024, 220: 108920.
[15] ZHAI W X, XU Z, PAN J W, et al. A general image classification model for agricultural machinery trajectory mode recognition[J]. Computers and Electronics in Agriculture, 2024, 227: 109629.
[16] 吴才聪, 方向明. 基于北斗系统的大田智慧农业精准服务体系构建[J]. 智慧农业, 2019, 1(4): 83-90.
WU C C, FANG X M. Development of precision service system for intelligent agriculture field crop production based on BeiDou system[J]. Smart Agriculture, 2019, 1(4): 83-90.
[17] 翟卫欣, 潘家文, 兰玉彬, 等. 基于多元振荡黏菌算法的田路分割模型参数优化方法[J]. 农业工程学报, 2022, 38(18): 176-183.
ZHAI W X, PAN J W, LAN Y B, et al. Parameter optimization of field-road trajectory segmentation model using multiplex oscillation slime mould algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(18): 176-183.
[18] 闫佳和, 李红辉, 孙婧, 等. 面向交通流预测的时空图神经网络发展综述[J/OL]. 计算机工程与应用, 2025: 1-22 (2025-05-23)[2025-08-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250522001&dbname=CJFD&dbcode=CJFQ.
YAN J H, LI H H, SUN J, et al. The development of spatio-temporal graph neural networks for traffic flow prediction: a review[J/OL]. Computer Engineering and Applications, 2025: 1-22 (2025-05-23)[2025-08-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250522001&
dbname=CJFD&dbcode=CJFQ.
[19] POTEKO J, EDER D, NOACK P O. Identifying operation modes of agricultural vehicles based on GNSS measurements[J]. Computers and Electronics in Agriculture, 2021, 185: 106105.
[20] ZHAI W X, XIONG X Y, MO G Z, et al. A Bagging-SVM field-road trajectory classification model based on feature enhancement[J]. Computers and Electronics in Agriculture, 2024, 217: 108635.
[21] CHEN Y, LI G Y, ZHANG X Q, et al. Identifying field and road modes of agricultural Machinery based on GNSS recordings: a graph convolutional neural network approach[J]. Computers and Electronics in Agriculture, 2022, 198: 107082.
[22] ZHAI W X, MO G Z, XIAO Y Z, et al. GAN-BiLSTM network for field-road classification on imbalanced GNSS recordings[J]. Computers and Electronics in Agriculture, 2024, 216: 108457.
[23] LI D, LIU X, ZHOU K, et al. Discovering spatiotemporal characteristics of the trans-regional harvesting operation using big data of GNSS trajectories in China[J]. Computers and Electronics in Agriculture, 2023, 211: 108003.
[24] WITHINGTON L, DIAZ PARDO DE VERA D, GUEST C, et al. Artificial neural networks for classifying the time series sensor data generated by medical detection dogs[J]. Expert Systems with Applications, 2021, 184: 115564.
[25] GUPTA A, GUPTA H P, BISWAS B, et al. An unseen fault classification approach for smart appliances using ongoing multivariate time series[J]. IEEE Transactions on Industrial Informatics, 2021, 17(6): 3731-3738.
[26] 陈思宇, 何永福, 谢世维, 等. 考虑跨空间特征重构的行人过街动作检测方法[J/OL]. 计算机工程与应用, 2025: 1-14 (2025-05-30)[2025-08-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250528006&dbname=
CJFD&dbcode=CJFQ.
CHEN S Y, HE Y F, XIE S W, et al. Pedestrian crossing behavior detection method considering cross-spatial feature reconstruction[J/OL]. Computer Engineering and Applications, 2025: 1-14 (2025-05-30)[2025-08-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250528006&
dbname=CJFD&dbcode=CJFQ.
[27] DU M S, WEI Y X, ZHENG X W, et al. Causal and local correlations based network for multivariate time series classification[J]. Neurocomputing, 2025, 634: 129884.
[28] GóRECKI T, ?UCZAK M. Multivariate time series classification with parametric derivative dynamic time warping[J]. Expert Systems with Applications, 2015, 42(5): 2305-2312.
[29] SCH?FER P, LESER U. Multivariate time series classification with WEASEL+MUSE[J]. arXiv:1711.11343, 2017.
[30] 唐胜唐, 吴共庆, 台昌杨, 等. 基于样本间潜在关系的多变量时间序列分类[J]. 合肥工业大学学报(自然科学版), 2023, 46(12): 1642-1650.
TANG S T, WU G Q, TAI C Y, et al. Multivariate time series classification via potential relationship between samples[J]. Journal of Hefei University of Technology (Natural Science), 2023, 46(12): 1642-1650.
[31] ZHENG Y, LIU Q, CHEN E H, et al. Time series classification using multi-channels deep convolutional neural networks[C]//Proceedings of the International Conference on Web-Age Information Management. Cham: Springer, 2014: 298-310.
[32] KARIM F, MAJUMDAR S, DARABI H, et al. Multivariate LSTM-FCNs for time series classification[J]. Neural Networks, 2019, 116: 237-245.
[33] 张大伟, 王炫, 何小卫, 等. 基于深度学习的RGBT目标跟踪研究进展[J/OL]. 计算机工程与应用, 2025: 1-20 (2025-05-29)[2025-08-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250528004&dbname=CJFD&
dbcode=CJFQ.
ZHANG D W, WANG X, HE X W, et al. Research progress of RGBT object tracking based on deep learning[J/OL]. Computer Engineering and Applications, 2025: 1-20 (2025-05-29)[2025-08-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250528004&dbname=CJFD&dbcode=
CJFQ.
[34] 吕学强, 王夏雨, 马登豪. 面向推荐系统的用户兴趣建模综述[J/OL]. 计算机工程与应用, 2025: 1-18 (2025-05-23)[2025-08-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250522002&dbname=CJFD&dbcode=CJFQ.
LYU X Q, WANG X Y, MA D H. A survey of user interest modeling for recommendation systems[J/OL]. Computer Engineering and Applications, 2025: 1-18 (2025-05-23)[2025-08-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250522002&dbname=CJFD&dbcode=CJFQ.
[35] 吕倩茹, 许金伟, 姜晶菲, 等. DAQ: 基于分治策略的自适应Vision Transformer低位宽量化方法[J]. 计算机研究与发展, 2025, 62(6): 1530-1546.
Lü Q R, XU J W, JIANG J F, et al. DAQ: divide-and-conquer strategy based adaptive low-bit quantization method for vision transformer[J]. Journal of Computer Research and Development, 2025, 62(6): 1530-1546.
[36] 潘书煜, 赵征鹏, 阳秋霞, 等. 基于ViT语义指导与结构感知增强的艺术风格迁移[J]. 计算机学报, 2025, 48(9): 2131-2158.
PAN S Y, ZHAO Z P, YANG Q X, et al. Structure-enhanced artistic style transfer via ViT semantic guidance and structure-aware enhancement[J]. Chinese Journal of Computers, 2025, 48(9): 2131-2158.
[37] 侯良威, 刘刚, 习江涛. 基于多层级特征聚合的时空关联视觉目标跟踪算法[J/OL]. 计算机工程与应用, 2025: 1-15(2025-05-22)[2025-08-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250519005&dbname=
CJFD&dbcode=CJFQ.
HOU L W, LIU G, XI J T. Spatiotemporal associative visual target tracking algorithm based on multi-level feature aggregation[J/OL]. Computer Engineering and Applications, 2025: 1-15 (2025-05-22)[2025-08-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250519005&dbname=CJFD&dbcode=CJFQ.
[38] YUN S, JEONG M, KIM R, et al. Graph transformer networks[C]//Advances in Neural Information Processing Systems, 2019.
[39] ZHANG X C, GAO Y F, LIN J, et al. TapNet: multivariate time series classification with attentional prototypical network[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 6845-6852.
[40] CHEN Y, ZHANG X Q, WU C C, et al. Field-road trajectory segmentation for agricultural machinery based on direction distribution[J]. Computers and Electronics in Agriculture, 2021, 186: 106180.
[41] ZHANG X Q, CHEN Y, JIA J P, et al. Multi-view density-based field-road classification for agricultural machinery: DBSCAN and object detection[J]. Computers and Electronics in Agriculture, 2022, 200: 107263.
[42] XIAO Y Z, MO G Z, XIONG X Y, et al. DR-XGBoost: an XGBoost model for field-road segmentation based on dual feature extraction and recursive feature elimination[J]. International Journal of Agricultural and Biological Engineering, 2023, 16(3): 169-179. |