计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (21): 129-143.DOI: 10.3778/j.issn.1002-8331.2504-0038

• YOLO改进及应用专题 • 上一篇    下一篇

PATD-YOLO:基于YOLOv11的道路障碍目标检测算法

纪文杰,宋廷伦,容小洛,周迈   

  1. 1.南京航空航天大学 能源与动力学院, 南京 210016
    2.奇瑞汽车股份有限公司,安徽 芜湖 241007
  • 出版日期:2025-11-01 发布日期:2025-10-31

PATD-YOLO:Road Obstacle Object Detection Algorithm Based on YOLOv11

JI Wenjie, SONG Tinglun, RONG Xiaoluo, ZHOU Mai   

  1. 1.College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    2.Chery Automobile Co., Ltd., Wuhu, Anhui 241007, China
  • Online:2025-11-01 Published:2025-10-31

摘要: 道路障碍检测对车辆驾驶操控的稳定性与行驶的安全性极为重要,针对路面复杂纹理和异物多样性导致的误检、漏检及小目标物体检测精度不足问题,提出基于YOLOv11的改进道路障碍目标检测模型(PATD-YOLO)。设计融合双主干网络,其中MCPStem(multi-convolution pooling)模块共享浅层特征,HGNetV2作为第二主干引入动态卷积增强参数表达能力,特征动态校准融合(feature dynamic aligning merge)模块消除多源特征空间差异,实现高效特征融合。设计小目标物体增强特征金字塔,增加P2层高分辨率特征图,采用SPDConv切片操作保留小目标信息,设计GLAFI(global-local aggregate feature information)模块进行特征整合模块融合浅层细粒度与深层语义特征。引入可重参数化卷积(reparameterizable convolution)设计了重参数轻量化检测头(reparameterized lightweight detection head),提高参数利用率。实验结果表明,在参数量与计算量基本不变的情况下,改进算法在自建数据集与RDD2022公开数据集上的检测精度mAP@0.5相较于基准算法分别提升3.0和4.3个百分点,均超越了主流算法,并且检测速度达到131.6 FPS,能够满足车辆检测的实时性要求。

关键词: 道路障碍检测, YOLOv11, 特征动态融合, 可重参数化

Abstract: Road obstacle detection is crucial for ensuring driving stability and traffic safety. To address the issues of false detection, missed detection, and insufficient accuracy in small object detection caused by complex road textures and diverse obstacles, this paper proposes an improved road obstacle detection model based on YOLOv11, named PATD-YOLO. A dual-backbone network is designed, in which the multi-convolution pooling stem?(MCPStem) module shares shallow features, while HGNetV2 is introduced as the second backbone to enhance parameter representation capability through dynamic convolution. The feature dynamic aligning merge (FDAM) module eliminates spatial discrepancies in multi-source features, enabling efficient feature fusion. A small-object-enhanced feature pyramid is constructed by incorporating high-resolution P2-layer feature maps. SPDConv operations are employed to preserve small object information, and the global-local aggregate feature information (GLAFI) module is designed to integrate fine-grained shallow features with deep semantic features. A reparameterized lightweight detection head is introduced using reparameterizable convolution to improve parameter efficiency. Experimental results demonstrate that, with nearly identical parameters and computational costs, the proposed algorithm achieves 3.0 and 4.3 percentage points improvements in mAP@0.5 on a self-built dataset and the public RDD2022 dataset, respectively, outperforming mainstream algorithms. Moreover, the detection speed reaches 131.6 FPS, meeting real-time requirements for vehicle detection.

Key words: road obstacle detection, YOLOv11, feature dynamic fusion, reparameterizable