[1] 王佳荣. 面向自动驾驶的多传感器三维环境感知系统关键技术研究[D]. 长春: 中国科学院大学 (中国科学院长春光学精密机械与物理研究所), 2020.
WANG J R. Research on key technologies of multi-sensor 3D environment perception systems for autonomous driving[D]. Changchun: Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2020.
[2] ZHAO T, HE J X, LV J C, et al. A comprehensive implementation of road surface classification for vehicle driving assistance: dataset, models, and deployment[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8361-8370.
[3] 孟波, 史旭华, 张彬. 基于双分支卷积和深度插值的点云表面重建[J]. 计算机工程, 2025, 51(7): 119-126.
MENG B, SHI X H, ZHANG B. Point cloud surface reconstruction based on dual-branch convolution and deep interpolation[J]. Computer Engineering, 2025, 51(7): 119-126.
[4] LI Z J, KOLMANOVSKY I, ATKINS E, et al. H∞ filtering for cloud-aided semi-active suspension with delayed road information[J]. IFAC-PapersOnLine, 2015, 48(12): 275-280.
[5] TSAI Y J, CHATTERJEE A. Pothole detection and classification using 3D technology and watershed method[J]. Journal of Computing in Civil Engineering, 2018, 32(2): 04017078.
[6] HOU C J, XIE Y Q, ZHANG Z Z. An improved convolutional neural network based indoor localization by using Jenks natural breaks algorithm[J]. China Communications, 2022, 19(4): 291-301.
[7] HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87-110.
[8] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[9] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[12] 梁天添, 杨淞淇, 钱振明. 基于改进YOLOv8s的恶劣天气车辆行人检测方法[J]. 电子测量技术, 2024, 47(9): 112-119.
LIANG T T, YANG S Q, QIAN Z M. Improved YOLOv8s method for vehicle and pedestrian detection in adverse weather[J]. Electronic Measurement Technology, 2024, 47(9): 112-119.
[13] 陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4): 1201-1227.
CHEN K Q, ZHU Z L, DENG X M, et al. Deep learning for multi-scale object detection: a survey[J]. Journal of Software, 2021, 32(4): 1201-1227.
[14] ARYA D, MAEDA H, GHOSH S K, et al. RDD2022: a multi-national image dataset for automatic road damage detection[J]. Geoscience Data Journal, 2024, 11(4): 846-862.
[15] GOU C, PENG B, LI T R, et al. Pavement crack detection based on the improved faster-RCNN[C]//Proceedings of the 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering. Piscataway: IEEE, 2019: 962-967.
[16] LI S B, HUANG Y J. Damage detection algorithm based on faster-RCNN[C]//Proceedings of the 2023 5th International Conference on Electronics and Communication, Network and Computer Technology. Piscataway: IEEE, 2023: 177-180.
[17] 马荣贵, 黄训燕, 董世浩. 基于改进YOLOv8的实时坑槽检测算法研究[J/OL]. 计算机工程, 2024: 1-10(2024-08-13)[2025-03-20]. https://link.cnki.net/doi/10.19678/j.issn.1000-3428.0069671.
MA R G, HUANG X Y, DONG S H. Research on real-time pothole detection algorithm based on improved YOLOv8[J/OL]. Computer Engineering, 2024: 1-10(2024-08-13)[2025-03-20]. https://link.cnki.net/doi/10.19678/j.issn.1000-3428.0069671.
[18] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want toLearn using programmable gradient information[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2025: 1-21.
[19] 刘泽, 宋廷伦, 石先让, 等. 基于改进RT-DETR的路面异常检测技术研究[J/OL]. 计算机工程, 2024: 1-14(2024-11-21)[2025-03-20]. https://link.cnki.net/doi/10.19678/j.issn.1000-3428.00EC0070182.
LIU Z, SONG T L, SHI X R, et al. Research on pavement anomaly detection technology based on improved RT-DETR[J/OL]. Computer Engineering, 2024: 1-14(2024-11-21)[2025-03-20]. https://link.cnki.net/doi/10.19678/j.issn.1000-3428.00EC0070182.
[20] 辛世澳, 葛海波, 袁昊, 等. 改进YOLOv7的轻量化水下目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 88-99.
XIN S A, GE H B, YUAN H, et al. Improved lightweight underwater target detection algorithm of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(3): 88-99.
[21] VORUGUNTI C S, PULABAIGARI V, GORTHI R K S S, et al. OSVFuseNet: online signature verification by feature fusion and depth-wise separable convolution based deep learning[J]. Neurocomputing, 2020, 409: 157-172.
[22] CHEN Y P, DAI X Y, LIU M C, et al. Dynamic convolution: attention over convolution kernels[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11027-11036.
[23] KOLAHI S G, CHAHARSOOGHI S K, KHATIBI T, et al. MSA2Net: multi-scale adaptive attention-guided network for medical image segmentation[J]. arXiv:2407.21640,2024.
[24] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceeding of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2023: 443-459.
[25] CUI Y N, REN W Q, KNOLL A. Omni-kernel network for image restoration[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 1426-1434.
[26] 丁桐. 基于深度学习的高分辨率遥感影像道路提取算法研究[D]. 哈尔滨: 黑龙江大学, 2024.
DING T. Research on high resolution remote sensing image road extraction algorithm based on deep learning[D]. Harbin: Heilongjiang University, 2024.
[27] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635.
[28] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13728-13737.
[29] SAI GANESH NAIK M B, NIRMALRANI V. Detecting potholes using image processing techniques and real-world footage[C]//Proceeding of CISC 2020,Cognitive Informatics and Soft Computing. Singapore: Springer, 2021: 893-902.
[30] 吴明杰, 云利军, 陈载清, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024, 60(2): 191-199.
WU M J, YUN L J, CHEN Z Q, et al. Improved YOLOv5s small object detection algorithm in UAV view[J]. Computer Engineering and Applications, 2024, 60(2): 191-199.
[31] ZHAO K, PENG S F, LI Y J, et al. A lightweight Xray-YOLO-Mamba model for prohibited item detection in X-ray images using selective state space models[J]. Scientific Reports, 2025, 15: 13171.
[32] TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2019: 6105-6114.
[33] QIN D F, LEICHNER C, DELAKIS M, et al. MobileNetV4: universal models fortheMobile ecosystem[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2025: 78-96.
[34] FENG Y F, HUANG J G, DU S Y, et al. Hyper-YOLO: when visual object detection meets hypergraph computation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(4): 2388-2401. |