[1] SRIVASTAVA S, NARAYAN S, MITTAL S. A survey of deep learning techniques for vehicle detection from UAV images[J]. Journal of Systems Architecture, 2021, 117: 102152.
[2] 侯琛, 董俞伯. 基于深度学习的无人机目标识别与反制[J]. 软件, 2024, 45(5): 161-164.
HOU C, DONG Y B. Deep learning based UAV target recognition and countermeasures[J]. Software, 2024, 45(5): 161-164.
[3] GUAN J X, MA W M. Ultra-deep channel sand body target recognition method based on improved deep learning under UAV cluster[J]. Open Geosciences, 2024, 16: 20220612.
[4] 李佳一, 闫振纲, 闫克丁, 等. 基于注意力与通道重排的无人机对地目标检测算法[J]. 兵器装备工程学报, 2024, 45(3): 306-313.
LI J Y, YAN Z G, YAN K D, et al. Detection algorithm of ground target based on attention and channel rearrangement for UAV[J]. Journal of Ordnance Equipment Engineering, 2024, 45(3): 306-313.
[5] DU X M, ZHANG S W, LIU L. UAV trajectory optimization for sensing exploiting target location distribution map[C]//Proceedings of the 2024 IEEE 99th Vehicular Technology Conference. Piscataway: IEEE, 2024: 1-5.
[6] HUANG Y Q, HUANG H, NIU M B, et al. UAV complex-scene single-target tracking based on improved re-detection staple algorithm[J]. Remote Sensing, 2024, 16(10): 1768.
[7] XU W Y, SUN H J, WANG S. SAT: spectrum-adaptive transformer with spatial awareness for UAV target tracking[J]. Remote Sensing, 2025, 17(1): 52.
[8] HUANG J Y, XIE J W, ZHAI H L, et al. An adaptive constant acceleration model for maneuvering target tracking[J]. Remote Sensing, 2025, 17(5): 850.
[9] GONG Y Q, YU X H, DING Y, et al. Effective fusion factor in FPN for tiny object detection[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 1159-1167.
[10] ZHANG Y. Detection and tracking of human motion targets in video images based on camshift algorithms[J]. IEEE Sensors Journal, 2020, 20(20): 11887-11893.
[11] CHEN X L, YU X H, HUANG Y, et al. Adaptive clutter suppression and detection algorithm for radar maneuvering target with high-order motions via sparse fractional ambiguity function[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1515-1526.
[12] MANTAU A J, WIDAYAT I W, LEU J S, et al. A human-detection method based on YOLOv5 and transfer learning using thermal image data from UAV perspective for surveillance system[J]. Drones, 2022, 6(10): 290.
[13] 郝紫霄, 王琦.基于YOLO-v7的无人机航拍图像小目标检测改进算法[J].软件导刊, 2024, 23(1): 167-172.
HAO Z X, WANG Q. Enhanced algorithm for small target detection in UAV aerial images based on YOLO-v7[J]. Software Guide, 2024, 23(1): 167-172.
[14] 单慧琳, 王硕洋, 童俊毅, 等. 增强小目标特征的多尺度光学遥感图像目标检测[J]. 光学学报, 2024, 44(6): 0628006.
SHAN H L, WANG S Y, TONG J Y, et al. Multi-scale optical remote sensing image target detection based on enhanced small target features[J]. Acta Optica Sinica, 2024, 44(6): 0628006.
[15] 鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13): 1315002.
JU M R, LUO J N, WANG Z B, et al. Multi-scale target detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 2020, 40(13): 1315002.
[16] LAN Z Y, ZHUANG F Y, LIN Z J, et al. MFO-net: a multiscale feature optimization network for UAV image object detection[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 6006605.
[17] 吴明杰, 云利军, 陈载清, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024, 60(2): 191-199.
WU M J, YUN L J, CHEN Z Q, et al. Improved YOLOv5s small object detection algorithm in UAV view[J]. Computer Engineering and Applications, 2024, 60(2): 191-199.
[18] TAHIR N U A, LONG Z, ZHANG Z P, et al. PVswin-YOLOv8s: UAV-based pedestrian and vehicle detection for traffic management in smart cities using improved YOLOv8[J]. Drones, 2024, 8(3): 84.
[19] 胡峻峰, 李柏聪, 朱昊, 等. 改进YOLOv8的轻量化无人机目标检测算法[J]. 计算机工程与应用, 2024, 60(8): 182-191.
HU J F, LI B C, ZHU H, et al. Improved YOLOv8 lightweight UAV target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(8): 182-191.
[20] LOU H T, DUAN X H, GUO J M, et al. DC-YOLOv8: small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10): 2323.
[21] ZHU P F, WEN L Y, DU D W, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7380-7399.
[22] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
[23] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[24] DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2020: 6568-6577.
[25] CAI Z S, HONG Z Y, YU W H, et al. CNXResNet: a light-weight backbone based on PP-YOLOE for drone-captured scenarios[C]//Proceedings of the 2023 8th International Conference on Signal and Image Processing. Piscataway: IEEE, 2023: 460-464.
[26] ZHANG Z X. Drone-YOLO: an efficient neural network method for target detection in drone images[J]. Drones, 2023, 7(8): 526.
[27] WANG G, CHEN Y F, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190. |