[1] AKILA DEVI M P, LATHA T, SULOCHANA C H. Iterative thresholding based image segmentation using 2D improved Otsu algorithm[C]//Proceedings of the 2015 Global Conference on Communication Technologies. Piscataway: IEEE, 2015: 145-149.
[2] 徐欢, 李振璧, 姜媛媛, 等. 基于OpenCV和改进Canny算子的路面裂缝检测[J]. 计算机工程与设计, 2014, 35(12): 4254-4258.
XU H, LI Z B, JIANG Y Y, et al. Pavement crack detection based on OpenCV and improved Canny operator[J]. Computer Engineering and Design, 2014, 35(12): 4254-4258.
[3] 胥铁峰, 黄河, 张红民, 等. 基于改进YOLOv8的轻量化道路病害检测方法[J]. 计算机工程与应用, 2024, 60(14): 175-186.
XU T F, HUANG H, ZHANG H M, et al. Lightweight road damage detection method based on improved YOLOv8[J]. Computer Engineering and Applications, 2024, 60(14): 175-186.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[8] ANDIKA F, BANDUNG Y. Road damage classification using SSD mobilenet with image enhancement[C]//Proceedings of the 2023 International Conference on Computer Science, Information Technology and Engineering. Piscataway: IEEE, 2023: 540-545.
[9] WANG G, CHEN Y F, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190.
[10] ZHANG Z X, LU X Q, CAO G J, et al. ViT-YOLO: transformer-based YOLO for object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2799-2808.
[11] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[12] ZHANG H X, LIU K, GAN Z X, et al. UAV-DETR: efficient end-to-end object detection for unmanned aerial vehicle imagery[J]. arXiv:2501.01855, 2025.
[13] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[14] 赵磊, 李栋. PMM-YOLO: 多尺度特征融合的交通标志检测算法[J]. 计算机工程与应用, 2025, 61(4): 262-271.
ZHAO L, LI D. PMM-YOLO: traffic sign detection algorithm with multi-scale feature fusion[J]. Computer Engineering and Applications, 2025, 61(4): 262-271.
[15] 高翊轩, 李昕, 刘婧彤. 改进YOLOv5的小目标交通标志检测方法[J]. 计算机工程与设计, 2024, 45(12): 3639-3647.
GAO Y X, LI X, LIU J T. Improved YOLOv5 small target traffic sign detection method[J]. Computer Engineering and Design, 2024, 45(12): 3639-3647.
[16] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[J]. arXiv:2410.17725, 2024.
[17] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[18] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580.
[19] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[20] HO J, KALCHBRENNER N, WEISSENBORN D, et al. Axial attention in multidimensional transformers[J]. arXiv:1912.12180, 2019.
[21] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 9992-10002.
[22] TIAN Y J, YE Q X, DOERMANN D. YOLOv12: attention-centric real-time object detectors[J]. arXiv:2502.12524, 2025.
[23] DAO T, FU D Y, ERMON S, et al. FlashAttention: fast and memory-efficient exact attention with IO-awareness[J]. arXiv:2205.14135, 2022.
[24] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[25] HE A, LI X B, WU X M, et al. ALSS-YOLO: an adaptive lightweight channel split and shuffling network for TIR wildlife detection in UAV imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 17308-17326.
[26] HAN S, MAO H Z, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding[J]. arXiv:1510.00149, 2015.
[27] YAN H H, ZHANG J F. UAV-PDD2023: a benchmark dataset for pavement distress detection based on UAV images[J]. Data in Brief, 2023, 51: 109692.
[28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[29] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[30] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[31] WANG Z Y, LI C, XU H Y, et al. Mamba YOLO: a simple baseline for object detection with state space model[J]. arXiv:2406.05835, 2024.
[32] FENG Y F, HUANG J G, DU S Y, et al. Hyper-YOLO: when visual object detection meets hypergraph computation[J]. arXiv:2408.04804, 2024.
[33] LEI M Q, LI S Q, WU Y H, et al. YOLOv13: real-time object detection with hypergraph-enhanced adaptive visual perception[J]. arXiv:2506.17733, 2025.
[34] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.
[35] ARYA D, MAEDA H, GHOSH S K, et al. RDD2022: a multi-national image dataset for automatic road damage detection[J]. arXiv:2209.08538, 2022. |