计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (21): 81-93.DOI: 10.3778/j.issn.1002-8331.2503-0397

• YOLO改进及应用专题 • 上一篇    下一篇

LFDS-YOLO:多尺度特征融合的轻量化航拍路面病害检测算法

李勇,沈坚   

  1. 重庆邮电大学 工业互联网学院,重庆 400065
  • 出版日期:2025-11-01 发布日期:2025-10-31

LFDS-YOLO: Lightweight Aerial Pavement Damage Detection Algorithm with Multi-Scale Feature Fusion

LI Yong, SHEN Jian   

  1. School of Industrial Internet, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Online:2025-11-01 Published:2025-10-31

摘要: 现有航拍路面病害检测算法存在特征提取冗余、计算复杂度高,全局注意力计算效率低下以及卷积注意力维度信息少、语义不足的问题,导致检测精度和实时性能受限。为解决上述问题,提出了一种基于多尺度特征融合与注意力机制改进的轻量化检测网络LFDS-YOLO。通过移除大尺度特征分支重构特征金字塔结构LF_PANet(lightweight fusion path aggregation network),提出动态特征提取模块DFEB(dynamic feature extraction block),实现资源自适应分配。提出多头列区域注意力机制MHCol-Attn(multi-head column attention),结合FlashAttention加速技术,优化训练效率。提出SLCA(superior lightweight coordinate attention),提高卷积注意力多维信息的特征提取能力。采用非结构化剪枝技术压缩模型体积并提高检测速度。实验结果表明,LFDS-YOLO在UAV-PDD2023公开数据集上的平均精度较YOLOv11s提高3.5个百分点,模型参数、计算复杂度和模型大小分别降低53.2%、6.5%和52.2%,检测速度达到95?FPS,有效应用于航拍路面病害检测。

关键词: 路面病害检测, YOLOv11s, 特征融合, 注意力机制, 轻量化

Abstract: Current aerial pavement distress detection algorithms suffer from redundant feature extraction, high computational complexity, inefficient global attention mechanisms, and limited multi-dimensional feature extraction in convolutional attention, leading to constrained detection accuracy and real-time performance. To address these issues, this paper proposes LFDS-YOLO, a lightweight detection network based on multi-scale feature fusion and enhanced attention mechanisms. This paper reconstructs a feature pyramid structure (LF_PANet) by removing large-scale feature branches, designs a dynamic feature extraction block (DFEB) for adaptive resource allocation. A multi-head column attention mechanism (MHCol-Attn) is introduced, accelerated by FlashAttention to optimize training efficiency. A superior lightweight coordinate attention (SLCA) is proposed to enhance multi-dimensional feature extraction. Unstructured pruning is employed to compress model size and boost inference speed. Experimental results on the UAV-PDD2023 dataset demonstrate that LFDS-YOLO achieves a 3.5 percentage points higher mAP than YOLOv11s, while reducing parameters, computational complexity, and model size by 53.2%, 6.5%, and 52.2%, respectively, with a detection speed of 95 FPS, validating its effectiveness in aerial pavement distress detection.

Key words: pavement defect detection, YOLOv11s, feature fusion, attention mechanism, lightweight