
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (21): 15-29.DOI: 10.3778/j.issn.1002-8331.2501-0190
吕学强,王夏雨,马登豪
出版日期:2025-11-01
发布日期:2025-10-31
LYU Xueqiang, WANG Xiayu, MA Denghao
Online:2025-11-01
Published:2025-10-31
摘要: 聚焦用户兴趣建模任务,对点击意图识别和兴趣构建方法进行归纳分析,并探讨该领域现存挑战。用户兴趣建模包括点击意图识别和兴趣构建两个级联阶段。根据是否对用户点击行为涉及特征给予差异化关注,将点击意图识别方法归纳为个性化和非个性化两类;根据对用户点击意图序列处理方式的不同,将兴趣构建方法划分为聚集式和生成式两类,为该领域提供清晰的研究思路。在ml-20m和Amazon_all_beauty数据集上进行实验,采用Recall、Precision、MRR和NDCG作为评价指标,验证各类兴趣构建方法的优势与不足。用户兴趣建模能够依据行为序列及其上下文信息构建兴趣表示,帮助模型学习用户行为之间的隐含关系进而实现个性化推荐服务。但是该任务仍面临一些挑战,例如个性化点击意图识别方法未充分探索一元点击意图之间的潜在关联性,兴趣构建阶段需要深刻认知兴趣多样性从而捕捉不同粒度的用户兴趣等。
吕学强, 王夏雨, 马登豪. 面向推荐系统的用户兴趣建模综述[J]. 计算机工程与应用, 2025, 61(21): 15-29.
LYU Xueqiang, WANG Xiayu, MA Denghao. Survey of User Interest Modeling for Recommendation Systems[J]. Computer Engineering and Applications, 2025, 61(21): 15-29.
| [1] HE X N, HE Z K, SONG J K, et al. NAIS: neural attentive item similarity model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2354-2366. [2] TANG J X, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573. [3] TAN Q Y, ZHANG J W, YAO J C, et al. Sparse-interest network for sequential recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 598-606. [4] MA J X, ZHOU C, CUI P, et al. Learning disentangled representations for recommendation[C]//Advances in Neural Information Processing Systems, 2019: 5712-5723. [5] 余鹏, 刘星雨, 程颢, 等. 在线课程推荐系统综述[J]. 计算机工程与应用, 2023, 59(22): 1-14. YU P, LIU X Y, CHENG H, et al. Survey of online course recommendation system[J]. Computer Engineering and Applications, 2023, 59(22): 1-14. [6] 吴性丽, 张皓月, 廖虎昌. 面向在线问诊平台的医生推荐方法及应用研究综述[J]. 计算机科学, 2025, 52(5): 109-121. WU X L, ZHANG H Y, LIAO H C. Review of doctor recommendation methods and applications for consultation platforms[J]. Computer Science, 2025, 52(5): 109-121. [7] 吕福荣, 师云龙, 景晓宁, 等. 服装推荐系统的关键技术研究进展[J]. 现代纺织技术, 2024, 32(12): 134-144. Lü F R, SHI Y L, JING X N, et al. Research progress on key technologies of clothing recommendation systems[J]. Advanced Textile Technology, 2024, 32(12): 134-144. [8] 张雄涛, 祝娜, 郭玉慧. 基于图神经网络的会话推荐方法综述[J]. 数据分析与知识发现, 2024, 8(2): 1-16. ZHANG X T, ZHU N, GUO Y H. A survey on session-based recommendation methods with graph neural network[J]. Data Analysis and Knowledge Discovery, 2024, 8(2): 1-16. [9] 朱冬亮, 文奕, 万子琛. 基于知识图谱的推荐系统研究综述[J]. 数据分析与知识发现, 2021, 5(12): 1-13. ZHU D L, WEN Y, WAN Z C. Review of recommendation systems based on knowledge graph[J]. Data Analysis and Knowledge Discovery, 2021, 5(12): 1-13. [10] 张明星, 张骁雄, 刘姗姗, 等. 利用知识图谱的推荐系统研究综述[J]. 计算机工程与应用, 2023, 59(4): 30-42. ZHANG M X, ZHANG X X, LIU S S, et al. Review of recommendation systems using knowledge graph[J]. Computer Engineering and Applications, 2023, 59(4): 30-42. [11] 王慧欣, 童向荣. 融合知识图谱的推荐系统研究进展[J]. 浙江大学学报(工学版), 2023, 57(8): 1527-1540. WANG H X, TONG X R. Research progress of recommendation system based on knowledge graph[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(8): 1527-1540. [12] 高广尚. 推荐系统中神经网络结合注意力机制研究综述[J]. 计算机工程与应用, 2024, 60(10): 47-60. GAO G S. Review of research on neural network combined with attention mechanism in recommendation system[J]. Computer Engineering and Applications, 2024, 60(10): 47-60. [13] 高广尚. 可解释推荐模型中的可解释性方法研究综述[J]. 数据分析与知识发现, 2024, 8(S1): 6-19. GAO G S. A survey of interpretable methods in interpretable recommendation model[J]. Data Analysis and Knowledge Discovery, 2024, 8(S1): 6-19. [14] ZHANG L, LIU F A, WU H C, et al. CFF: combining interactive features and user interest features for click-through rate prediction[J]. The Journal of Supercomputing, 2024, 80(3): 3282-3309. [15] ZHOU G R, ZHU X Q, SONG C R, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1059-1068. [16] DU X Y, YUAN H H, ZHAO P P, et al. Frequency enhanced hybrid attention network for sequential recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 78-88. [17] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206. [18] LIU Q, ZENG Y F, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1831-1839. [19] HOU Y P, HU B B, ZHANG Z Q, et al. CORE: simple and effective session-based recommendation within consistent representation space[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1796-1801. [20] ZHOU G R, MOU N, FAN Y, et al. Deep interest evolution network for click-through rate prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 5941-5948. [21] XU W N, HE H X, TAN M S, et al. Deep interest with hierarchical attention network for click-through rate prediction[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1905-1908. [22] NIU C, HUANG W, YANG Y J. Multi-granularity interest learning for click-through rate prediction[C]//Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2024: 1970-1977. [23] FENG Y F, LV F Y, SHEN W C, et al. Deep session interest network for click-through rate prediction[J]. arXiv:1905. 06482, 2019. [24] ZHANG T T, ZHAO P P, LIU Y C, et al. Feature-level deeper self-attention network for sequential recommendation[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019: 4320-4326. [25] CAO Y, ZHOU X J, FENG J Q, et al. Sampling is all you need on modeling long-term user behaviors for CTR prediction[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 2974-2983. [26] ZHOU R J, JIN Z M, WAN J, et al. Evolutionary interest representation network for click-through rate prediction[C]//Proceedings of the 2023 IEEE International Conference on Web Services. Piscataway: IEEE, 2023: 535-544. [27] XU E, YU Z W, GUO B, et al. Core interest network for click-through rate prediction[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(2): 1-16. [28] XIAO Z B, YANG L W, JIANG W, et al. Deep multi-interest network for click?through rate prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 2265-2268. [29] QIN J R, ZHANG W N, WU X, et al. User behavior retrieval for click?through rate prediction[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 2347-2356. [30] CHEN Q W, ZHAO H, LI W, et al. Behavior sequence transformer for e-commerce recommendation in Alibaba[C]//Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. New York: ACM, 2019: 1-4. [31] LYU Z, DONG Y, HUO C F, et al. Deep match to rank model for personalized click-through rate prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 156-163. [32] ZHANG C X, QIU L Q, JING C X, et al. TIAE-DSIN: a time interval aware deep session interest network for click-through rate prediction[J]. Expert Systems with Applications, 2024, 249: 123531. [33] HOU X Y, WANG Z, LIU Q, et al. Deep context interest network for click-through rate prediction[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 3948-3952. [34] XIE Y Q, ZHOU P L, KIM S. Decoupled side information fusion for sequential recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1611-1621. [35] MA D H, PEI H B, BAO P, et al. Deep click interest network for reranking hotels[J]. Engineering Applications of Artificial Intelligence, 2024, 130: 107675. [36] CHEN P L, WEN H, ZHANG J, et al. cold-start based multi-scenario ranking model for click-through rate prediction[C]//Proceedings of the 1st International Conference on Database Systems for Advanced Applications. Cham: Springer, 2023: 64-79. [37] ZHANG X, WANG Z M, DU B, et al. Deep session heterogeneity-aware network for click through rate prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(12): 7927-7939. [38] XUE S, HE C Q, HUA Z X, et al. Interactive attention-based capsule network for click-through rate prediction[J]. IEEE Access, 2024, 12: 170335-170345. [39] XIE R B, LING C, WANG Y L, et al. Deep feedback network for recommendation[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020: 2519-2525. [40] XIA L H, HUANG C, XU Y, et al. Multi-behavior sequential recommendation with temporal graph transformer[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 6099-6112. [41] MA D H, SUN J J, CHEN Y G, et al. Two-stage interest calibration network for reranking hotels[C]//Proceedings of the International Conference on Database Systems for Advanced Applications. Cham: Springer, 2023: 325-335. [42] 仲兆满, 管燕, 胡云, 等. 基于背景和内容的微博用户兴趣挖掘[J]. 软件学报, 2017, 28(2): 278-291. ZHONG Z M, GUAN Y, HU Y, et al. Mining user interests on microblog based on profile and content[J]. Journal of Software, 2017, 28(2): 278-291. [43] 张玉洁, 董政, 孟祥武. 个性化广告推荐系统及其应用研究[J]. 计算机学报, 2021, 44(3): 531-563. ZHANG Y J, DONG Z, MENG X W. Research on personalized advertising recommendation systems and their applications[J]. Chinese Journal of Computers, 2021, 44(3): 531-563. [44] YU M T, LIU T T, YIN J, et al. Deep interest context network for click-through rate[J]. Applied Sciences, 2022, 12(19): 9531. [45] YU M T, LIU T T, YIN J. Deep filter context network for click-through rate prediction[J]. Journal of Theoretical and Applied Electronic Commerce Research, 2023, 18(3): 1446-1462. [46] CHEN J Y, ZHANG H W, HE X N, et al. Attentive collaborative filtering: multimedia recommendation with item-and component-level attention[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 335-344. [47] YING H C, ZHUANG F Z, ZHANG F Z, et al. Sequential recommender system based on hierarchical attention networks[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2018: 3926-3932. [48] XUE T, LIN Z, ZHANG Z, et al. Large scale hierarchical user interest modeling for click-through rate prediction[C]//Proceedings of the Recommender Systems Challenge 2024, 2024: 53-57. [49] MA C, KANG P, LIU X. Hierarchical gating networks for sequential recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 825-833. [50] GAI K, ZHU X Q, LI H, et al. Learning piece-wise linear models from large scale data for ad click prediction[J]. arXiv:1704.05194, 2017. [51] PI Q, ZHOU G R, ZHANG Y J, et al. Search-based user interest modeling with lifelong sequential behavior data for click-through rate prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 2685-2692. [52] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems, 2017: 3856-3866. [53] YANG S, LEE F F, MIAO R, et al. RS-CapsNet: an advanced capsule network[J]. IEEE Access, 2020, 8: 85007-85018. [54] KWABENA PATRICK M, FELIX ADEKOYA A, ABRA MIGHTY A, et al. Capsule networks—a survey[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(1): 1295-1310. [55] LI C, LIU Z Y, WU M M, et al. Multi-interest network with dynamic routing for recommendation at Tmall[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2615-2623. [56] ZHAO Z H, FAN W Q, LI J T, et al. Recommender systems in the era of large language models (LLMs)[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(11): 6889-6907. [57] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv:1511.06939, 2015. [58] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [59] DAI H J, WANG Y C, TRIVEDI R, et al. Recurrent coevolutionary latent feature processes for continuous-time recommendation[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 29-34. [60] TAN Y K, XU X X, LIU Y. Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 17-22. [61] LI J, REN P J, CHEN Z M, et al. Neural attentive session-based recommendation[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017: 1419-1428. [62] GAO J Y, ZHANG T Z, XU C S. A unified personalized video recommendation via dynamic recurrent neural networks[C]//Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 127-135. [63] RAKKAPPAN L, RAJAN V. Context-aware sequential recommendations with stacked recurrent neural networks[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 3172-3178. [64] ZHAO N, LONG Z, WANG J, et al. AGRE: a knowledge graph recommendation algorithm based on multiple paths embeddings RNN encoder[J]. Knowledge-Based Systems, 2023, 259: 110078. [65] LIN X, NIU S Z, WANG Y Q, et al. K-plet recurrent neural networks for sequential recommendation[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2018: 1057-1060. [66] FAN X Y, LIU Z, LIAN J X, et al. Lighter and better: low-rank decomposed self-attention networks for next-item recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1733-1737. [67] ZHANG Y H, YANG B, MAO R Z, et al. MGT: multi-Granularity Transformer leveraging multi-level relation for sequential recommendation[J]. Expert Systems with Applications, 2024, 238: 121808. [68] XIE J Y, CHEN Z Z. Hierarchical transformer with spatio-temporal context aggregation for next point-of-interest recommendation[J]. ACM Transactions on Information Systems, 2024, 42(2): 1-30. [69] ZHONG H J, MA J C, DUAN X B, et al. Deep target session interest network for click-through rate prediction[C]//Proceedings of the 2024 International Joint Conference on Neural Networks. Piscataway: IEEE, 2024: 1-8. [70] SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1441-1450. [71] LI Z K, CUI Z Y, WU S, et al. Fi-GNN: modeling feature interactions via graph neural networks for CTR prediction[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 539-548. [72] ZHANG H Y, PAN J W, LIU D P, et al. Deep pattern network for click-through rate prediction[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 1189-1199. [73] ZHOU K, YU H, ZHAO W X, et al. Filter-enhanced MLP is all you need for sequential recommendation[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2388-2399. [74] HOU Y P, ZHANG J J, LIN Z H, et al. Large language models are zero-shot rankers for recommender systems[C]//Advances in Information Retrieval. Cham: Springer, 2024: 364-381. [75] ZHAI J Q, LIAO L, LIU X, et al. Actions speak louder than words: trillion-parameter sequential transducers for generative recommendations[J]. arXiv:2402.17152, 2024. [76] CHEN J Y, CHI L, PENG B Y, et al. HLLM: enhancing sequential recommendations via hierarchical large language models for item and user modeling[J]. arXiv:2409.12740, 2024. [77] LIU J L, LIU C, ZHOU P L, et al. Is ChatGPT a good recommender? a preliminary study[J]. arXiv:2304.10149, 2023. [78] SUN W W, YAN L Y, MA X Y, et al. Is ChatGPT good at search? investigating large language models as re-ranking agents[J]. arXiv:2304.09542, 2023. [79] HE Z K, XIE Z H, JHA R, et al. Large language models as zero-shot conversational recommenders[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 720-730. [80] LIU Q J, CHEN N, SAKAI T, et al. ONCE: boosting content-based recommendation with both open- and closed-source large language models[J]. arXiv:2305.06566, 2023. [81] ZHANG A, CHEN Y X, SHENG L H, et al. On generative agents in recommendation[J]. arXiv:2310.10108, 2023. [82] BAO K Q, ZHANG J Z, ZHANG Y, et al. TALLRec: an effective and efficient tuning framework to align large language model with recommendation[J]. arXiv:2305.00447, 2023. [83] ZHANG J J, XIE R B, HOU Y P, et al. Recommendation as instruction following: a large language model empowered recommendation approach[J]. arXiv:2305.07001, 2023. [84] LIN X, WANG W, LI Y, et al. A multi-facet paradigm to bridge large language model and recommendation[J]. arXiv:2310.06491, 2023. [85] ZHANG Y, FENG F L, ZHANG J Z, et al. CoLLM: integrating collaborative embeddings into large language models for recommendation[J]. arXiv:2310.19488, 2023. [86] WANG W J, LIN X Y, FENG F L, et al. Generative recommendation: towards next-generation recommender paradigm[J]. arXiv:2304.03516, 2023. [87] SUN Z X, SI Z H, ZANG X X, et al. Large language models enhanced collaborative filtering[C]//Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. New York: ACM, 2024: 2178-2188. [88] KIM S, KANG H CHOI S, et al. Large language models meet collaborative filtering: an efficient all-round LLM-based recommender system[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 1395-1406. [89] WANG J L, LU H K, LIU Y F, et al. LLMs for user interest exploration in large-scale recommendation systems[C]//Proceedings of the 18th ACM Conference on Recommender Systems. New York: ACM, 2024: 872-877. [90] WANG J L, LU H K, CAVERLEE J, et al. Large language models as data augmenters for cold-start item recommendation[C]//Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 726-729. [91] LIU Q, WU X, ZHAO X, et al. Large language models enhanced sequential recommendation for long-tail user and item[J]. arXiv:2405.20646, 2024. [92] WU J D, CHANG C C, YU T, et al. CoRAL: collaborative retrieval-augmented large language models improve long-tail recommendation[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 3391-3401. [93] GAO Y F, SHENG T, XIANG Y L, et al. Chat-REC: towards interactive and explainable LLMs-augmented recommender system[J]. arXiv:2303.14524, 2023. [94] LEI Y X, LIAN J X, YAO J, et al. RecExplainer: aligning large language models for explaining recommendation models[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 1530-1541. [95] KONG X Y, WU J C, ZHANG A, et al. Customizing language models with instance-wise LoRA for sequential recommendation[J]. Advances in Neural Information Processing Systems, 2025: 113072-113095. [96] KONSTANTINA C, ALBERTO L, CJ A, et al. Large language models for user interest journeys[J]. arXiv:2305.15498, 2023. [97] LIN J H, SHAN R, ZHU C X, et al. ReLLa: retrieval-enhanced large language models for lifelong sequential behavior comprehension in recommendation[C]//Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 3497-3508. [98] XU W, XIAO J, CHEN J L. Leveraging large language models to enhance personalized recommendations in E-commerce[C]//Proceedings of the 2024 International Conference on Electrical, Communication and Computer Engineering. Piscataway: IEEE, 2025: 1-6. [99] LI P B, DE RIJKE M, XUE H, et al. Large language models for next point-of-interest recommendation[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 1463-1472. [100] ZHAO W X, MU S L, HOU Y P, et al. RecBole: towards a unified, comprehensive and efficient framework for recommendation algorithms[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 4653-4664. [101] 姜书浩, 张立毅, 周娜. 个性化推荐系统中的多样性综述[J]. 软件工程与应用, 2019, 8(3): 172-178. JIANG S H, ZHANG L Y, ZHOU N. A survey of diversity in personalized recommendation systems[J]. Software Engineering and Applications, 2019, 8(3): 172-178. [102] LI J M, ZHANG W T, WANG T, et al. GPT4Rec: a generative framework for personalized recommendation and user interests interpretation[J]. arXiv:2304.03879, 2023. [103] LU W S, LIAN J X, ZHANG W, et al. Aligning large language models for controllable recommendations[J]. arXiv:2403.05063, 2024. [104] LI L, ZHANG Y F, CHEN L, et al. Prompt distillation for efficient LLM-based recommendation[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 1348-1357. [105] ZHANG J Z, BAO K Q, WANG W J, et al. Prospect personalized recommendation on large language model-based agent platform[J]. arXiv:2402.18240, 2024. |
| [1] | 庾源清, 马为之, 张敏. 基于内在奖励的强化学习推荐探索策略[J]. 计算机工程与应用, 2025, 61(7): 188-195. |
| [2] | 刘景祥, 王锋, 魏巍. 融合元知识和SVD的多视图对比学习推荐系统[J]. 计算机工程与应用, 2025, 61(22): 159-169. |
| [3] | 任衍栋, 张东, 李冠宇. 融合注意力与结构降噪的对比学习知识感知推荐[J]. 计算机工程与应用, 2025, 61(17): 232-240. |
| [4] | 赵博, 王宇嘉, 倪骥. E-TUP:融合E-CP与TUP的联合知识图谱学习推荐方法[J]. 计算机工程与应用, 2024, 60(8): 99-109. |
| [5] | 赵文涛, 薛赛丽, 刘甜甜. 结合项目属性协作信号减少无关邻域的推荐[J]. 计算机工程与应用, 2024, 60(7): 101-107. |
| [6] | 唐宇, 吴贞东. 基于残差网络的轻量级图卷积推荐方法[J]. 计算机工程与应用, 2024, 60(3): 205-212. |
| [7] | 武金路, 崔晓晖. 基于用户隐式反馈信号和多维度兴趣的新闻推荐算法[J]. 计算机工程与应用, 2024, 60(12): 101-110. |
| [8] | 漆盛, 高榕, 邵雄凯, 吴歆韵, 万祥, 高海燕. 面向超图的可解释性对比元路径群组推荐[J]. 计算机工程与应用, 2024, 60(11): 268-280. |
| [9] | 高广尚. 推荐系统中神经网络结合注意力机制研究综述[J]. 计算机工程与应用, 2024, 60(10): 47-60. |
| [10] | 邢峻也, 邢星, 贾志淳, 王鸿达, 刘嘉雯. 融合知识图谱与注意力机制的项目推荐算法[J]. 计算机工程与应用, 2024, 60(10): 173-179. |
| [11] | 倪伟竣, 纪淑娟, 梁永全. 利用图神经网络的互补产品推荐[J]. 计算机工程与应用, 2024, 60(10): 292-300. |
| [12] | 马蓓欣, 郝斌, 张飞, 高鹭, 任晓颖. 基于张量相似度的推荐方法研究[J]. 计算机工程与应用, 2023, 59(8): 157-166. |
| [13] | 崔少国, 独潇, 杨泽田. 多注意力机制融合低高阶特征的神经推荐算法[J]. 计算机工程与应用, 2023, 59(8): 192-199. |
| [14] | 吴国栋, 王雪妮, 刘玉良. 知识图谱增强的图神经网络推荐研究进展[J]. 计算机工程与应用, 2023, 59(4): 18-29. |
| [15] | 张明星, 张骁雄, 刘姗姗, 田昊, 杨琴琴. 利用知识图谱的推荐系统研究综述[J]. 计算机工程与应用, 2023, 59(4): 30-42. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||