计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (20): 248-259.DOI: 10.3778/j.issn.1002-8331.2406-0293

• 图形图像处理 • 上一篇    下一篇

基于多记忆增强模块及图像轮廓重建的工业表面异常检测

杨曜,许湘云,张琳娜,陈建强,岑翼刚,黄彦森   

  1. 1.贵州大学 机械工程学院,贵阳 550025
    2.北京交通大学 计算机科学与技术学院,北京 100044
    3.贵州大学 土木工程学院,贵阳 550025
  • 出版日期:2025-10-15 发布日期:2025-10-15

Industrial Surface Anomaly Detection Based on Reconstruction with Multiple Memory Enhancement Modules and Image Edge

YANG Yao,  XU Xiangyun, ZHANG Linna, CHEN Jianqiang, CEN Yigang, HUANG Yansen   

  1. 1.School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
    2.School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China
    3.School of Civil Engineering, Guizhou University, Guiyang 550025, China
  • Online:2025-10-15 Published:2025-10-15

摘要: 基于重建的工业图像异常检测通常假设模型能很好重建正常区域,而不能很好重建异常区域。但由于深度神经网络存在过度泛化问题,使得异常区域也能被较好重建,导致异常区域漏检。为解决上述问题,提出一种基于多记忆增强模块及图像轮廓重建的工业表面异常检测网络(industrial surface anomaly detection based on reconstruction with multiple memory enhancement modules and image edge,MMAERec)。具体来说,在带有跳跃连接的U-Net类型去噪自编码器上引入多记忆增强模块和图像轮廓提取模块。多记忆增强模块得到的记忆特征有利于很好地重建正常区域;而提取到的图像轮廓特征则有利于很好重建图像轮廓。将这两种不同特征的融合经注意力机制处理并用于重建能很好地提高重建图像质量。所提方法可以强制网络学习正常的低频和高频信息,防止模型直接复制异常区域,有效缓解过度泛化问题。在MVTec AD和BTAD两个工业数据集上的实验结果也展现了所提方法良好的检测和定位性能。

关键词: 重建网络, 多记忆增强模块, 注意力机制, 图像轮廓

Abstract: Reconstruction-based anomaly detection in industrial images usually assumes that the model can reconstruct the normal region well, but not the abnormal region well. However, due to the over-generalization problem of deep neural networks, abnormal regions can also be reconstructed well, resulting in the leakage of abnormal regions. In order to solve the above problems, this paper proposes an industrial surface anomaly detection model based on reconstruction with multiple memory enhancement modules and image edge (MMAERec). Specifically, multiple memory enhancement modules and image edge extraction modules are introduced on a UNet-type denoising self-encoder with skip connections. The memory features obtained from the multi-memory enhancement module facilitate a good reconstruction of the normal region, while the extracted image edge features facilitate a good reconstruction of the image contour. The fusion of these two different features processed by the attention mechanism and used for reconstruction can improve the quality of the reconstructed image very well. The proposed method can force the network to learn normal low-frequency and high-frequency information, preventing the model from directly replicating the abnormal regions, and effectively alleviating the overgeneralization problem. Experimental results on two industrial datasets, MVTec AD and BTAD, also demonstrate the good detection and localization performance of the proposed method.

Key words: reconstruction network, multiple memory enhancement modules, attentional mechanism, image edge