[1] ZHANG F H, KAN S C, ZHANG D M, et al. A graph model-based multiscale feature fitting method for unsupervised anomaly detection[J]. Pattern Recognition, 2023, 138: 109373.
[2] ZHANG L Y, KAN S C, CEN Y G, et al. A normalizing flow-based bidirectional mapping residual network for unsupervised defect detection[J]. Computers, Materials & Continua, 2024, 78(2): 1631-1648.
[3] 张兰尧, 陈晓玲, 张达敏, 等. ValidFlow: 基于标准化流的无监督图像缺陷检测[J].数据采集与处理, 2023, 38(6): 1445-1457.
ZHANG L, CHEN X, ZHANG D, et al. ValidFlow: unsupervised image defect detection based on normalizing flows[J].Journal of Data Acquisition and Processing, 2023, 38(6): 1445-1457.
[4] DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[C]//Proceedings of the International Conference on Pattern Recognition. Cham: Springer International Publi-shing, 2021: 475-489.
[5] ZHOU Y, XU X, SONG J, et al. MSFlow: multiscale flow-based framework for unsupervised anomaly detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(2): 2437-2450.
[6] COHEN N, HOSHEN Y. Sub-image anomaly detection with deep pyramid correspondences[J]. arXiv:2005.02357, 2020.
[7] WANG G D, HAN S M, DING E R, et al. Student-teacher feature pyramid matching for anomaly detection[J]. arXiv: 2103.04257, 2021.
[8] YANG J, SHI Y, QI Z Q. DFR: deep feature reconstruction for unsupervised anomaly segmentation[J]. arXiv:2012.07122, 2020.
[9] GONG D, LIU L Q, LE V, et al. Memorizing normality to det-ect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714.
[10] YAMADA S, KAMIYA S, HOTTA K. Reconstructed student-teacher and discriminative networks for anomaly dete-ction[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2022: 2725-2732.
[11] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255.
[12] LIU T, LI B, ZHAO Z, et al. Reconstruction from edge image combined with color and gradient difference for industrial surface anomaly detection[J]. arXiv:2210.14485, 2022.
[13] BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD: a comprehensive real-world dataset for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9584-9592.
[14] MISHRA P, VERK R, FORNASIER D, et al. VT-ADL: a vision transformer network for image anomaly detection and localization[C]//Proceedings of the IEEE 30th International Symposium on Industrial Electronics. Piscataway: IEEE, 2021: 1-6.
[15] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//Proceedings of the International Conference on Machine Learning, 2018: 4393-4402.
[16] BERGMAN L, HOSHEN Y. Classification-based anomaly detection for general data[J]. arXiv:2005.02359, 2020.
[17] RIPPEL O, MERTENS P, MERHOF D. Modeling the distribution of normal data in pre-trained deep features for anomaly detection[C]//Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 6726-6733.
[18] ZAVRTANIK V, KRISTAN M, SKO?AJ D. Reconstruction by inpainting for visual anomaly detection[J]. Pattern Recognition, 2021, 112: 107706.
[19] BERGMANN P, L?WE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to auto-encoders[J]. arXiv:1807.02011, 2018.
[20] COLLIN A S, DE VLEESCHOUWER C. Improved anomaly detection by training an autoencoder with skip connections on images corrupted with Stain-shaped noise[C]//Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 7915-7922.
[21] VENKATARAMANAN S, PENG K C, SINGH R V, et al. Attention guided anomaly localization in images[C]//Proceedings of the European Conference on Computer Vision.Cham: Springer International Publishing, 2020: 485-503.
[22] LIANG Y, ZHANG J, ZHAO S, et al. Omni-frequency channel-selection representations for unsupervised anomaly detection[J]. IEEE Trans Image Process, 2023, 32: 4327-4340.
[23] SCHLEGL T, SEEB?CK P, WALDSTEIN S M, et al. F-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks[J].Medical Image Analysis, 2019, 54: 30-44.
[24] MEI S, YANG H, YIN Z P. An unsupervised-learning-based approach for automated defect inspection on textured surfaces[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1266-1277.
[25] KANG G Q, GAO S B, YU L, et al. Deep architecture for high-speed railway insulator surface defect detection: deno-ising autoencoder with multitask learning[J]. IEEE Transa-ctions on Instrumentation and Measurement, 2019, 68(8): 2679-2690.
[26] GOLAN I, EL-YANIV R. Deep anomaly detection using geometric transformations[J]. arXiv:1805.10917, 2018.
[27] YE F, HUANG C Q, CAO J K, et al. Attribute restoration framework for anomaly detection[J]. IEEE Transactions on Multimedia, 2022, 24: 116-127.
[28] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600-612.
[29] CWOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. New York: ACM, 2018: 3-19.
[30] BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2020: 4182-4191.
[31] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[32] FUKUI H, HIRAKAWA T, YAMASHITA T, et al. Attention branch network: learning of attention mechanism for visual explanation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2019: 10697-10706.
[33] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2021: 13708-13717.
[34] SHI Y, YANG J, QI Z. Unsupervised anomaly segmentation via deep feature reconstruction[J]. Neurocomputing, 2021, 424: 9-22.
[35] SCHLüTER H M, TAN J, HOU B . Self-supervised out-of-distribution detection and localization with natural synthetic anomalies (NSA)[J]. arXiv:2109.15222, 2021.
[36] YI J , YOON S. Patch SVDD: patch-level SVDD for anomaly detection and segmentation[C]//Proceedings of the Asian Conference on Computer Vision, 2020: 375-390.
[37] PIRNAY J, CHAI K. Inpainting transformer for anomaly detection[C]//Proceedings of the International Conference on Image Analysis and Processing. Cham: Springer International Publishing, 2022: 394-406.
[38] HOU J L, ZHANG Y Y, ZHONG Q Y, et al. Divide-and-assemble: learning block-wise memory for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8771-8780.
[39] ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2022: 14298-14308. |