计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 1-11.DOI: 10.3778/j.issn.1002-8331.2501-0157

• 热点与综述 • 上一篇    下一篇

基于模型和算法的量化投资方法股票预测研究综述

李子煜,张金珠,高青山   

  1. 河北工业大学 理学院,天津 300401
  • 出版日期:2025-10-01 发布日期:2025-09-30

Review on Stock Prediction Based on Models and Algorithms Within Quantitative Investment Methods

LI Ziyu, ZHANG Jinzhu, GAO Qingshan   

  1. School of Science, Hebei University of Technology, Tianjin 300401, China
  • Online:2025-10-01 Published:2025-09-30

摘要: 股票价格预测一直是金融研究热点领域。近年来,量化投资方法凭借其客观性、系统性与高效性,逐渐成为股票市场研究的主流方向。随着大数据时代的到来,海量、多源、异构的数据为市场建模与决策提供了丰富的信息基础,有效融合多模态数据已成为提升预测准确性的关键路径。系统梳理了量化投资方法的理论演进,回顾了机器学习在股票预测中的应用发展。围绕数据、模型与算法三个维度,对近年来基于量化方法的研究成果进行了综述,深入分析并比较了不同研究在方法创新与技术实现上的差异与优势。此外,还探讨了当前研究中面临的挑战与局限,归纳总结了现有实践经验,并对多模态异构数据融合、弱信号挖掘、迁移学习及组合权重优化等研究方向进行了深入分析与展望。

关键词: 量化投资, 股票预测, 机器学习, 自然语言处理

Abstract: Stock price prediction remains a critical topic in financial research. In recent years, quantitative investment methods have gained prominence for their objectivity, systematic structure, and efficiency. The proliferation of large-scale, multi-source, and heterogeneous data in the era of big data provides a rich foundation for market modeling and decision-making. Effectively integrating multimodal data has become essential for improving prediction accuracy. This paper reviews the theoretical evolution of quantitative investment methods and examines the development of machine learning applications in stock prediction. From the perspectives of data, models, and algorithms, it surveys recent research outcomes, analyzing and comparing differences in methodological innovations and technical implementations. Challenges and limitations in current research are discussed, along with a summary of practical insights. Future directions such as multimodal data integration, weak signal mining, transfer learning, and portfolio weight optimization are also explored.

Key words: quantitative investment, stock forecast, machine learning, natural language processing