
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 1-11.DOI: 10.3778/j.issn.1002-8331.2501-0157
李子煜,张金珠,高青山
出版日期:2025-10-01
发布日期:2025-09-30
LI Ziyu, ZHANG Jinzhu, GAO Qingshan
Online:2025-10-01
Published:2025-09-30
摘要: 股票价格预测一直是金融研究热点领域。近年来,量化投资方法凭借其客观性、系统性与高效性,逐渐成为股票市场研究的主流方向。随着大数据时代的到来,海量、多源、异构的数据为市场建模与决策提供了丰富的信息基础,有效融合多模态数据已成为提升预测准确性的关键路径。系统梳理了量化投资方法的理论演进,回顾了机器学习在股票预测中的应用发展。围绕数据、模型与算法三个维度,对近年来基于量化方法的研究成果进行了综述,深入分析并比较了不同研究在方法创新与技术实现上的差异与优势。此外,还探讨了当前研究中面临的挑战与局限,归纳总结了现有实践经验,并对多模态异构数据融合、弱信号挖掘、迁移学习及组合权重优化等研究方向进行了深入分析与展望。
李子煜, 张金珠, 高青山. 基于模型和算法的量化投资方法股票预测研究综述[J]. 计算机工程与应用, 2025, 61(19): 1-11.
LI Ziyu, ZHANG Jinzhu, GAO Qingshan. Review on Stock Prediction Based on Models and Algorithms Within Quantitative Investment Methods[J]. Computer Engineering and Applications, 2025, 61(19): 1-11.
| [1] 丁鹏. 量化投资: 策略与技术[M]. 北京: 电子工业出版社, 2016. DING P. Quantitative investment[M]. Beijing: Publishing House of Electronics Industry, 2016. [2] TSAI M C, CHENG C H, TSAI M I. A multifactor fuzzy time-series fitting model for forecasting the stock index[J]. Symmetry, 2019, 11(12): 1474. [3] AYALA J, GARCíA-TORRES M, NOGUERA J L V, et al. Technical analysis strategy optimization using a machine learning approach in stock market indices[J]. Knowledge-Based Systems, 2021, 225: 107119. [4] LEE M C, CHANG J W, YEH S C, et al. Applying attention-based BiLSTM and technical indicators in the design and performance analysis of stock trading strategies[J]. Neural Computing and Applications, 2022, 34(16): 13267-13279. [5] CHANDAR S K. Convolutional neural network for stock trading using technical indicators[J]. Automated Software Engineering, 2022, 29(1): 16. [6] CARPENTER J N, LU F Z, WHITELAW R F. The real value of China’s stock market[J]. Journal of Financial Economics, 2021, 139(3): 679-696. [7] 姜富伟, 胡逸驰, 黄楠. 央行货币政策报告文本信息、宏观经济与股票市场[J]. 金融研究, 2021(6): 95-113. JIANG F W, HU Y C, HUANG N. Textual information of central bank monetary policy report, macroeconomy and stock market performance[J]. Journal of Financial Research, 2021(6): 95-113. [8] MA F, GUO Y L, CHEVALLIER J, et al. Macroeconomic attention, economic policy uncertainty, and stock volatility predictability[J]. International Review of Financial Analysis, 2022, 84: 102339. [9] ZHANG L G, CHEN W Y, HU N. Economic policy uncertainty and stock liquidity: evidence from China[J]. International Journal of Emerging Markets, 2023, 18(1): 22-44. [10] DERAKHSHAN A, BEIGY H. Sentiment analysis on stock social media for stock price movement prediction[J]. Engineering Applications of Artificial Intelligence, 2019, 85: 569-578. [11] HAO P Y, KUNG C F, CHANG C Y, et al. Predicting stock price trends based on financial news articles and using a novel twin support vector machine with fuzzy hyperplane[J]. Applied Soft Computing, 2021, 98: 106806. [12] MAQBOOL J, AGGARWAL P, KAUR R, et al. Stock prediction by integrating sentiment scores of financial news and MLP-regressor: a machine learning approach[J]. Procedia Computer Science, 2023, 218: 1067-1078. [13] DENG S K, ZHU Y K, YU Y T, et al. An integrated approach of ensemble learning methods for stock index prediction using investor sentiments[J]. Expert Systems with Applications, 2024, 238: 121710. [14] HAN Y C, KIM J, ENKE D. A machine learning trading system for the stock market based on N-period Min-Max labeling using XGBoost[J]. Expert Systems with Applications, 2023, 211: 118581. [15] BEHERA J, PASAYAT A K, BEHERA H, et al. Prediction based mean-value-at-risk portfolio optimization using machine learning regression algorithms for multi-national stock markets[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105843. [16] PARRAY I R, KHURANA S S, KUMAR M, et al. Time series data analysis of stock price movement using machine learning techniques[J]. Soft Computing, 2020, 24(21): 16509-16517. [17] ZHANG L, LI C, CHEN L, et al. A hybrid forecasting method for anticipating stock market trends via a soft-thresholding de-noise model and support vector machine (SVM)[J]. World Basic and Applied Sciences Journal, 2023, 13(2023): 597-602. [18] GAO J Y, GUO H, XU X. Multifactor stock selection strategy based on machine learning: evidence from China[J]. Complexity, 2022, 2022(1): 7447229. [19] GUPTA D, PRATAMA M, MA Z, et al. Financial time series forecasting using twin support vector regression[J]. Public Library of Science ONE, 2019, 14(3): e0211402. [20] MA Y L, HAN R Z, WANG W Z. Portfolio optimization with return prediction using deep learning and machine learning[J]. Expert Systems with Applications, 2021, 165: 113973. [21] DASH R K, NGUYEN T N, CENGIZ K, et al. Fine-tuned support vector regression model for stock predictions[J]. Neural Computing and Applications, 2023, 35(32): 23295-23309. [22] YANG Z, ZHAO T L, WANG S W, et al. MDF-DMC: a stock prediction model combining multi-view stock data features with dynamic market correlation information[J]. Expert Systems with Applications, 2024, 238: 122134. [23] NTI I K, ADEKOYA A F, WEYORI B A. A comprehensive evaluation of ensemble learning for stock-market prediction[J]. Journal of Big Data, 2020, 7(1): 20. [24] NABIPOUR M, NAYYERI P, JABANI H, et al. Deep learning for stock market prediction[J]. Entropy, 2020, 22(8): 840. [25] GYAMERAH S A, NGARE P, IKPE D. On stock market movement prediction via stacking ensemble learning method[C]//Proceedings of ?2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics, 2019. [26] KAKADE K, JAIN I, MISHRA A K. Value-at-risk forecasting: a hybrid ensemble learning GARCH-LSTM based approach[J]. Resources Policy, 2022, 78: 102903. [27] YUAN X H, YUAN J, JIANG T Z, et al. Integrated long-term stock selection models based on feature selection and machine learning algorithms for China stock market[J]. IEEE Access, 2020, 8: 22672-22685. [28] HOSEINZADE E, HARATIZADEH S. CNNpred: CNN-based stock market prediction using a diverse set of variables[J]. Expert Systems with Applications, 2019, 129: 273-285. [29] WU J R, XU K, CHEN X Y, et al. Price graphs: utilizing the structural information of financial time series for stock prediction[J]. Information Sciences, 2022, 588: 405-424. [30] 葛业波, 刘文杰, 顾雨晨. 融合情感分析和GAN-TrellisNet的股价预测方法[J]. 计算机工程与应用, 2024, 60(12): 314-324. GE Y B, LIU W J, GU Y C. Stock price prediction method by fusing sentiment analysis and GAN-TrellisNet[J]. Computer Engineering and Applications, 2024, 60(12): 314-324. [31] LU M R, XU X R. TRNN: an efficient time-series recurrent neural network for stock price prediction[J]. Information Sciences, 2024, 657: 119951. [32] LI X Y, LI Y C, YANG H Y, et al. DP-LSTM: differential privacy-inspired LSTM for stock prediction using financial news[J]. arXiv:1912.10806, 2019. [33] LU W J, LI J Z, LI Y F, et al. A CNN-LSTM-based model to forecast stock prices[J]. Complexity, 2020, 2020(1): 6622927. [34] SHAH J, VAIDYA D, SHAH M. A comprehensive review on multiple hybrid deep learning approaches for stock prediction[J]. Intelligent Systems with Applications, 2022, 16: 200111. [35] 程孟菲, 高淑萍. 基于深度迁移学习的多尺度股票预测[J]. 计算机工程与应用, 2022, 58(12): 249-259. CHENG M F, GAO S P. Multi-scale stock prediction based on deep transfer learning[J]. Computer Engineering and Applications, 2022, 58(12): 249-259. [36] WU D M, WANG X L, WU S C. Jointly modeling transfer learning of industrial chain information and deep learning for stock prediction[J]. Expert Systems with Applications, 2022, 191: 116257. [37] YANG M, WANG J. Adaptability of financial time series prediction based on BiLSTM[J]. Procedia Computer Science, 2022, 199: 18-25. [38] DARADKEH M K. A hybrid data analytics framework with sentiment convergence and multi-feature fusion for stock trend prediction[J]. Electronics, 2022, 11(2): 250. [39] 袁婧, 潘甦, 谢浩, 等. 融合投资者情绪的S_AM_BiLSTM股价预测模型[J]. 计算机工程与应用, 2024, 60(7): 274-281. YUAN J, PAN S, XIE H, et al. Stock price prediction integrating investor sentiment based on S_AM_BiLSTM model[J]. Computer Engineering and Applications, 2024, 60(7): 274-281. [40] ZHANG J L, YE L S, LAI Y Z. Stock price prediction using CNN-BiLSTM-attention model[J]. Mathematics, 2023, 11(9): 1985. [41] LIU Y P, HUANG S Y, TIAN X Y, et al. A stock series prediction model based on variational mode decomposition and dual-channel attention network[J]. Expert Systems with Applications, 2024, 238: 121708. [42] XU H F, CHAI L, LUO Z M, et al. Stock movement prediction via gated recurrent unit network based on reinforcement learning with incorporated attention mechanisms[J]. Neurocomputing, 2022, 467: 214-228. [43] LIM Q Y E, CAO Q, QUEK C. Dynamic portfolio rebalancing through reinforcement learning[J]. Neural Computing and Applications, 2022, 34(9): 7125-7139. [44] KABBANI T, DUMAN E. Deep reinforcement learning approach for trading automation in the stock market[J]. IEEE Access, 2022, 10: 93564-93574. [45] JANG J, SEONG N. Deep reinforcement learning for stock portfolio optimization by connecting with modern portfolio theory[J]. Expert Systems with Applications, 2023, 218: 119556. [46] WU Y M, FU Z J, LIU X, et al. A hybrid stock market prediction model based on GNG and reinforcement learning[J]. Expert Systems with Applications, 2023, 228: 120474. [47] KHAN R H, MIAH J, RAHMAN M M, et al. A study of forecasting stocks price by using deep reinforcement learning[C]//Proceedings of 2023 IEEE World AI IoT Congress, 2023. [48] ELAHI A, TAGHVAEI F. Combining financial data and news articles for stock price movement prediction using large language models[J]. arXiv:2411.01368, 2024. [49] XIAO M, JIANG Z, QIAN L, et al. Enhancing financial time-series forecasting with retrieval-augmented large language models[J]. arXiv:2503.67890, 2025. [50] TONG H, LI J, WU N, et al. Ploutos: towards interpretable stock movement prediction with financial large language model[J]. arXiv:2403.00782, 2024. [51] KOA K J L, MA Y S, NG R, et al. Learning to generate explainable stock predictions using self-reflective large language models[C]//Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 4304-4315. [52] WANG S, JI T, WANG L, et al. Stocktime: a time series specialized large language model architecture for stock price prediction[J]. arXiv:2409.08281, 2024, [53] 胡聿文. 基于优化LSTM模型的股票预测[J]. 计算机科学, 2021, 48(S1): 151-157. HU Y W. Stock forecast based on optimized LSTM model[J]. Computer Science, 2021, 48(S1): 151-157. [54] 舒时克, 李路. 基于Elastic Net惩罚的多因子选股策略[J]. 统计与决策, 2021, 37(16): 157-161. SHU S K, LI L. Multi-factor stock selection strategy based on Elastic Net punishment[J]. Statistics & Decision, 2021, 37(16): 157-161. [55] PAN Z Y, PETTENUZZO D, WANG Y D. Forecasting stock returns: a predictor-constrained approach[J]. Journal of Empirical Finance, 2020, 55: 200-217. [56] 徐世辉. 朴素贝叶斯法量化投资策略参数的拓展[D]. 武汉: 华中科技大学, 2019. XU S H. The expansion of the quantitative investment strategy parameters constructed by Naive Bayesian method[D]. Wuhan: Huazhong University of Science and Technology, 2019. [57] SASSI I, ANTER S, BEKKHOUCHA A. A graph-based big data optimization approach using hidden Markov model and constraint satisfaction problem[J]. Journal of Big Data, 2021, 8(1): 93. [58] WANG W M, LIN W W, WEN Y M, et al. An interpretable intuitionistic fuzzy inference model for stock prediction[J]. Expert Systems with Applications, 2023, 213: 118908. [59] WANG L, WU J B, CAO Y, et al. Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: either, neither or both?[J]. Energy Economics, 2022, 111: 106056. [60] THAKKAR A, CHAUDHARI K. Information fusion-based genetic algorithm with long short-term memory for stock price and trend prediction[J]. Applied Soft Computing, 2022, 128: 109428. [61] CHEN W, ZHANG H Y, MEHLAWAT M K, et al. Mean-variance portfolio optimization using machine learning-based stock price prediction[J]. Applied Soft Computing, 2021, 100: 106943. [62] CHEN S L, ZHOU C J. Stock prediction based on genetic algorithm feature selection and long short-term memory neural network[J]. IEEE Access, 2020, 9: 9066-9072. [63] LIU X, GUO J H, WANG H, et al. Prediction of stock market index based on ISSA-BP neural network[J]. Expert Systems with Applications, 2022, 204: 117604. |
| [1] | 史张龙, 周喜, 王震, 马博, 杨雅婷. 多任务增强的文本生成式事件要素抽取方法[J]. 计算机工程与应用, 2025, 61(9): 168-176. |
| [2] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [3] | 任海玉, 刘建平, 王健, 顾勋勋, 陈曦, 张越, 赵昌顼. 基于大语言模型的智能问答系统研究综述[J]. 计算机工程与应用, 2025, 61(7): 1-24. |
| [4] | 吴瑞琪, 周毅. 知识融入多源多任务学习的眼底图像分类方法[J]. 计算机工程与应用, 2025, 61(7): 255-266. |
| [5] | 魏佳妹, 袁书娟, 孔闪闪, 杨爱民, 赵晨颖. 轻梯度提升机算法的发展与应用[J]. 计算机工程与应用, 2025, 61(5): 32-42. |
| [6] | 肖宇, 肖菁, 林桂锦, 倪荣森, 冼嘉荣, 袁基保. 可解释性逻辑推理数据集的构建和研究[J]. 计算机工程与应用, 2025, 61(4): 114-121. |
| [7] | 赵婵婵, 吕飞, 石宝, 尉晓敏, 杨星辰, 岳效灿. 面向边缘智能的协同推理方法研究综述[J]. 计算机工程与应用, 2025, 61(3): 1-20. |
| [8] | 句泽东, 程春雷, 叶青, 彭琳, 龚著凡. 中文语法纠错技术的研究进展综述[J]. 计算机工程与应用, 2025, 61(20): 36-53. |
| [9] | 符海阔, 乔塬心, 陈菁菁, 崔展齐, 王志伟. QAAttack:基于文本特征分析的问答系统模糊测试方法[J]. 计算机工程与应用, 2025, 61(20): 194-205. |
| [10] | 徐放, 尹伊纯, 吴方君. 方面级情感分析研究综述[J]. 计算机工程与应用, 2025, 61(19): 60-73. |
| [11] | 钱丽萍, 崔雨婷, 廉 露, 陈艳鹏, 黄楠楠. 低资源场景下的命名实体识别研究综述[J]. 计算机工程与应用, 2025, 61(18): 1-23. |
| [12] | 其其日力格, 斯琴图, 王斯日古楞. 基于深度学习的自动文本摘要研究综述[J]. 计算机工程与应用, 2025, 61(18): 24-40. |
| [13] | 秦董洪, 李政韬, 白凤波, 董路宽, 张慧, 徐晨. 大语言模型参数高效微调技术综述[J]. 计算机工程与应用, 2025, 61(16): 38-63. |
| [14] | 方岢愿, 许珂维. LLMs与ML优势互补:政务回复质量检测及可解释的算法框架[J]. 计算机工程与应用, 2025, 61(16): 146-159. |
| [15] | 李道童, 李盛新, 王兵, 姚藩益, 芦飞, 艾山彬, 张炳会, 孙秀强, 王若琳. 服务器内存可靠性技术研究综述[J]. 计算机工程与应用, 2025, 61(15): 72-92. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||