计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (17): 272-281.DOI: 10.3778/j.issn.1002-8331.2501-0103

• 图形图像处理 • 上一篇    下一篇

光照变换和深度不变性约束低光照深度估计

曹晓倩,王旸,刘伟峰   

  1. 陕西科技大学 电气与控制工程学院,西安 710021
  • 出版日期:2025-09-01 发布日期:2025-09-01

Illumination Transformation and Depth Invariance Constraint Depth Estimation for Low-Light Scene

CAO Xiaoqian, WANG Yang, LIU Weifeng   

  1. College of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
  • Online:2025-09-01 Published:2025-09-01

摘要: 针对现有单目深度估计算法在夜间辅助驾驶等应用场景中性能显著下降的问题,提出基于光照变换和深度不变性约束的低光照深度估计算法。核心思想是:通过良好光照图像光照分量的多样性低光照变换和同一场景的深度不变性约束,促使深度估计网络提取与光照无关的深层深度线索特征,提升网络在低光照场景中的泛化能力。具体为:以现有高性能深度估计网络为基础,获取良好光照条件下成对的“RGB-Depth”数据集;针对良好光照条件下所有RGB图像,以低光照图像为参考,逐一进行光照分量估计和变换,生成与原RGB图像同场景的系列低光照图像;利用生成低光照图像与原RGB图像的深度不变性约束,进行深度估计网络微调。实验结果表明,提出的算法在各个评价指标上均优于原深度估计算法Lite-Mono以及当前先进的低光照场景深度估计算法STEPS、ADDS等;另外,其容易嵌入其他经典深度估计网络提升原算法的光照域适应能力。

关键词: 单目深度估计, 低光照场景, 光照变换, 深度不变性约束

Abstract: A novel depth estimation algorithm based on illumination transformation and depth invariance constraint is proposed to solve the significantly degraded performance problem occurring in low-light scenarios, such as assisted driving at night. The key thought is to promote the depth estimation network’s low-light generalization ability through low-illumination diversity transformation and depth invariance constraint of the same scene, which can force the network to extract underlying light-independent depth features. Specifically, paired “RGB-Depth” dataset under well illumination is obtained with the SOTA depth estimation network at first. then, for each RGB image captured under good light, its illumination component is estimated and transformed referring to a good deal of low-light scene images to generate a series of low-light images with the same scene as it. Finally, the depth estimation network is fine-tuned using the depth invariance constraint between the generated low-light image and the original RGB image. The experimental results indicate that the proposed algorithm is superior to the original depth estimation algorithm(Lite-Mono)and the SOTA low-light depth estim-ation algorithms(STEPS and ADDS ) in all assessment criteria. In addition, the algorithm can be embedded into other classical depth estimation networks to improve the adaptive ability of the original algorithm conveniently.

Key words: monocular depth estimation, low-light scene, illumination transformation, depth invariance constraint