[1] 王道累, 肖佳威, 李建康, 等. 基于深度学习的立体影像视差估计方法综述[J]. 计算机工程与应用, 2022, 58(20): 16-27.
WANG D L, XIAO J W, LI J K, et al. Review of stereo image disparity estimation methods based on depth learning[J]. Computer Engineering and Applications, 2022, 58(20): 16-27.
[2] 程健, 李昊, 马昆, 等. 矿井视觉计算体系架构与关键技术[J]. 煤炭科学技术, 2023, 51(9): 202-218.
CHENG J, LI H, MA K, et al. Architecture and key technologies of mine visual computing[J]. China Industrial Economics, 2023, 51(9): 202-218.
[3] ARAMPATZAKIS V, PAVLIDIS G, MITIANOUDIS N, et al. Monocular depth estimation: a thorough review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(4): 2396-2414.
[4] MENZE M, GEIGER A. Object scene flow for autonomous vehicles[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3061-3070.
[5] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//Proceedings of the European Conference on Computer Vision, 2012: 746-760.
[6] FU H, GONG M M, WANG C H, et al. Deep ordinal regression network for monocular depth estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2002-2011.
[7] RANFTL R, LASINGER K, HAFNER D, et al. Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2022, 44(3): 1623-1637.
[8] YUAN W H, GU X D, DAI Z Z, et al. Neural window fully-connected CRFs for monocular depth estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 3906-3915.
[9] 武港, 刘威, 胡骏, 等. 面向交通场景基于双注意力机制和自适应代价卷的自监督单目深度估计[J]. 电子学报, 2024, 52(5): 1670-1678.
WU G, LIU W, HU J, et al. Self-supervised monocular depth estimation for traffic scenes based on dual attention mechanism and adaptive cost volume[J]. China Industrial Economics, 2024, 52(5): 1670-1678.
[10] HAN D, SHIN J, KIM N, et al. TransDSSL: transformer based depth estimation via self-supervised learning[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 10969-10976.
[11] ZHAO C Q, ZHANG Y M, POGGI M, et al. MonoViT: self-supervised monocular depth estimation with a vision transformer[C]//Proceedings of the International Conference on 3D Vision. Piscataway: IEEE, 2022: 668-678.
[12] PENG R, WANG R G, LAI Y W, et al. Excavating the potential capacity of self-supervised monocular depth estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15540-15549.
[13] GODARD C, MAC AODHA O, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3827-3837.
[14] WANG G M, ZHANG C, WANG H S, et al. Unsupervised learning of depth, optical flow and pose with occlusion from 3D geometry[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 308-320.
[15] ZHANG N, NEX F, VOSSELMAN G, et al. Lite-Mono: a lightweight CNN and transformer architecture for self-supervised monocular depth estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 18537-18546.
[16] 陈健威, 俞璐, 韩昌芝, 等. Transformer在域适应中的应用研究综述[J]. 计算机工程与应用, 2024, 60(13): 66-80.
CHEN J W, YU L, HAN C Z, et al. Review of research on application of transformer in domain adaptation[J]. Computer Engineering and Applications, 2024, 60(13): 66-80.
[17] CHANG T Y, YANG X, ZHANG T Z, et al. Domain generalized stereo matching via hierarchical visual transformation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 9559-9568.
[18] KE B X, OBUKHOV A, HUANG S Y, et al. Repurposing diffusion-based image generators for monocular depth estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 9492-9502.
[19] YANG L H, KANG B Y, HUANG Z L, et al. Depth anything: unleashing the power of large-scale unlabeled data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 10371-10381.
[20] WANG K, ZHANG Z Y, YAN Z Q, et al. Regularizing nighttime weirdness: efficient self-supervised monocular depth estimation in the dark[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 16035-16044.
[21] ZHENG Y P, ZHONG C L, LI P F, et al. STEPS: joint self-supervised nighttime image enhancement and depth estimation[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 4916-4923.
[22] MA L, MA T, LIU R, et al. Toward fast, flexible, and robust low-light image enhancement[J]. arXiv:2204.10137, 2022.
[23] LIU L N, SONG X B, WANG M M, et al. Self-supervised monocular depth estimation for all day images using domain separation[J]. arXiv:2108.07628, 2021.
[24] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[25] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11618-11628.
[26] EIGEN D, FERGUS R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 2650-2658.
[27]曹晓倩, 王旸, 刘伟峰, 等. 基于光照可靠性掩膜的低光照图像增强算法[J]. 计算机工程与应用, 2025, 61(1): 263-271.
CAO X Q, WANG Y, LIU W F, et al. Low light image enhancement based on illumination reliability mask[J]. Computer Engineering and Applications, 2025, 61(1): 263-271.
[28] SONG M, LIM S, KIM W. Monocular depth estimation using Laplacian pyramid-based depth residuals[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11): 4381-4393.
[29] BIAN J W, LI Z C, WANG N Y, et al. Unsupervised scale-consistent depth and ego-motion learning from monocular video[J]. arXiv:2105.11610, 2021. |