[1] CHENG G, XIE X X, HAN J W, et al. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735-3756.
[2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[4] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[5] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2961-2969.
[6] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
[7] DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems, 2016: 379-387.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[9] 周沁坤, 周华平, 孙克雷, 等. ARST-YOLOv7: 用于航空遥感图像的小目标检测网络[J]. 计算机工程与应用, 2025, 61(12): 232-242.
ZHOU Q K, ZHOU H P, SUN K L, et al. ARST-YOLOv7: small target detection network for aerial remote sensing images[J]. Computer Engineering and Applications, 2025, 61(12): 232-242.
[10] 杨志渊, 罗亮, 吴天阳, 等. 改进YOLOv8的轻量级光学遥感图像船舶目标检测算法[J]. 计算机工程与应用, 2024, 60(16): 248-257.
YANG Z Y, LUO L, WU T Y, et al. Improved lightweight ship target detection algorithm for optical remote sensing images with YOLOv8[J]. Computer Engineering and Applications, 2024, 60(16): 248-257.
[11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[12] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[13] ZHOU X Y, WANG D Q, KR?HENBüHL P, et al. Objects as points[J]. arXiv:1904.07850, 2019.
[14] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[15] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[16] JOSH B, ERIC K, ERIC T, et al. Toward transformer-based object detection[J]. arXiv:2012.09958, 2020.
[17] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[18] PENG Z L, HUANG W, GU S Z, et al. Conformer: local features coupling global representations for visual recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 357-366.
[19] XU X K, FENG Z J, CAO C Q, et al. An improved swin transformer-based model for remote sensing object detection and instance segmentation[J]. Remote Sensing, 2021, 13(23): 4779.
[20] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
[21] 赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2024, 45(8): 51-84.
ZHAO Q C, WU Y Q, YUAN Y B. Research progress on detection and recognition methods of ship targets in optical remote sensing images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 51-84.
[22] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[23] WAN Q, HUANG Z, LU J, et al. SeaFormer: squeeze-enhanced axial transformer for mobile semantic segmentation[J]. arXiv:2301.13156, 2023.
[24] WU H P, XIAO B, CODELLA N, et al. CvT: introducing convolutions to vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 22-31.
[25] PENG Y, SONKA M, &CHEN, D Z. U-Net v2: rethinking the skip connections of U-Net for medical image segmentation[J]. arXiv:2311.17791, 2023.
[26] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[27] CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415.
[28] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
[29] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[30] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[31] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[32] DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2014: 1090-1097.
[33] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[34] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[35] 苗茹, 岳明, 周珂, 等. 基于改进YOLOv7的遥感图像小目标检测方法[J]. 计算机工程与应用, 2024, 60(10): 246-255.
MIAO R, YUE M, ZHOU K, et al. Small target detection method in remote sensing images based on improved YOLOv7[J]. Computer Engineering and Applications, 2024, 60(10): 246-255.
[36] 张秀再, 沈涛, 许岱. 基于改进YOLOv8算法的遥感图像目标检测[J]. 激光与光电子学进展, 2024, 61(10): 1028001.
ZHANG X Z, SHEN T, XU D. Remote-sensing image object detection based on improved YOLOv8 algorithm[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1028001.
[37] ZHAO Y, LYU W, XU S, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023.
[38] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. |