[1] 张立艺, 武文红, 牛恒茂, 等. 深度学习中的安全帽检测算法应用研究综述[J]. 计算机工程与应用, 2022, 58(16): 1-17.
ZHANG L Y, WU W H, NIU H M, et al. Summary of application research on helmet detection algorithm based on deep learning[J]. Computer Engineering and Applications, 2022, 58(16): 1-17.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[3] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[5] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
[6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004. 10934, 2020.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[8] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[9] 刘晓慧, 叶西宁. 肤色检测和Hu矩在安全帽识别中的应用[J]. 华东理工大学学报(自然科学版), 2014, 40(3): 365-370.
LIU X H, YE X N. Skin color detection and Hu moments in helmet recognition research[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2014, 40(3): 365-370.
[10] RUBAIYAT A H M, TOMA T T, KALANTARI-KHANDANI M, et al. Automatic detection of helmet uses for construction safety[C]//Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops. Piscataway: IEEE, 2016: 135-142.
[11] 赵红成, 田秀霞, 杨泽森, 等. YOLO-S: 一种新型轻量的安全帽佩戴检测模型[J]. 华东师范大学学报(自然科学版), 2021(5): 134-145.
ZHAO H C, TIAN X X, YANG Z S, et al. YOLO-S: a new lightweight helmet wearing detection model[J]. Journal of East China Normal University (Natural Science), 2021(5): 134-145.
[12] 宋晓凤, 吴云军, 刘冰冰, 等. 改进YOLOv5s算法的安全帽佩戴检测[J]. 计算机工程与应用, 2023, 59(2): 194-201.
SONG X F, WU Y J, LIU B B, et al. Improved YOLOv5s algorithm for helmet wearing detection[J]. Computer Engineering and Applications, 2023, 59(2): 194-201.
[13] 李嘉信, 胡杨, 黄协舟, 等. 面向小目标的多空间层次安全帽检测[J]. 计算机工程与应用, 2024, 60(6): 230-237.
LI J X, HU Y, HUANG X Z, et al. Small target-oriented multi-space hierarchical helmet detection[J]. Computer Engineering and Applications, 2024, 60(6): 230-237.
[14] 吕宗喆, 徐慧, 杨骁, 等. 面向小目标的YOLOv5安全帽检测算法[J]. 计算机应用, 2023, 43(6): 1943-1949.
LYU Z Z, XU H, YANG X, et al. Small object detection algorithm of YOLOv5 for safety helmet[J]. Journal of Computer Applications, 2023, 43(6): 1943-1949.
[15] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[17] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
[18] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324.
[19] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 122-138.
[20] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[21] 黄硕清, 黄金贵. 基于RFB和YOLOv5特征增强融合改进的钢材表面缺陷检测方法[J]. 计算机工程, 2025, 51(4): 249-260.
HUANG S Q, HUANG J G. Improved steel defect detection method based on enhanced fusion of RFB and YOLOv5 features[J]. Computer Engineering, 2025, 51(4): 249-260.
[22] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[23] LEE Y, HWANG J W, LEE S, et al. An energy and GPU-computation efficient backbone network for real-time object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 752-760.
[24] JIN Z C, YU D D, SONG L C, et al. You should look at all objects[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 332-349.
[25] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[26] LUO Y H, CAO X, ZHANG J T, et al. CE-FPN: enhancing channel information for object detection[J]. Multimedia Tools and Applications, 2022, 81(21): 30685-30704.
[27] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019.
[28] 李雅雯, 孙浩然, 胡跃明, 等. 基于注意力机制与多尺度特征融合的电极缺陷YOLO检测算法[J]. 控制与决策, 2023, 38(9): 2578-2586.
LI Y W, SUN H R, HU Y M, et al. Electrode defect YOLO detection algorithm based on attention mechanism and multi-scale feature fusion[J]. Control and Decision, 2023, 38(9): 2578-2586.
[29] 苗荣慧, 李港澳, 黄宗宝, 等. 基于YOLOv7-ST-ASFF的复杂果园环境下苹果成熟度检测方法[J]. 农业机械学报, 2024, 55(6): 219-228.
MIAO R H, LI G A, HUANG Z B, et al. Maturity detection of apple in complex orchard environment based on YOLOv7-ST-ASFF[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(6): 219-228. |