[1] GRANDINI M, BAGLI E, VISANI G. Metrics for multi-class classification: an overview[J]. arXiv:2008.05756, 2020.
[2] SHATKAY H, PAN F X, RZHETSKY A, et al. Multi-dimensional classification of biomedical text: toward automated, practical provision of high-utility text to diverse users[J]. Bioinformatics, 2008, 24(18): 2086-2093.
[3] RODRIGUEZ J D, PEREZ A, ARTETA D, et al. Using multidimensional Bayesian network classifiers to assist the treatment of multiple sclerosis[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C(Applications and Reviews), 2012, 42(6): 1705-1715.
[4] AL MUKTADIR A H, MIYAZAWA T, MARTINEZ-JULIA P, et al. Multi-target classification based automatic virtual resource allocation scheme[J]. IEICE Transactions on Information and Systems, 2019, 102(5): 898-909.
[5] VERMA S P, USCANGA-JUNCO O A, DíAZ-GONZáLEZ L. A statistically coherent robust multidimensional classification scheme for water[J]. Science of the Total Environment, 2021, 750: 141704.
[6] HUANG T, JIA B B, ZHANG M L. Deep multi-dimensional classification with pairwise dimension-specific features[C]//Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, 2024: 4183-4191.
[7] JIA B B, ZHANG M L. Multi-dimensional classification via stacked dependency exploitation[J]. Science China Information Sciences, 2020, 63(12): 222102.
[8] ZHANG M L, LI Y K, LIU X Y, et al. Binary relevance for multi-label learning: an overview[J]. Frontiers of Computer Science, 2018, 12(2): 191-202.
[9] READ J, BIELZA C, LARRA?AGA P. Multi-dimensional classification with super-classes[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1720-1733.
[10] TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Random [k]-labelsets for multilabel classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(7): 1079-1089.
[11] GIL-BEGUE S, BIELZA C, LARRA?AGA P. Multi-dimensional Bayesian network classifiers: a survey[J]. Artificial Intelligence Review, 2021, 54(1): 519-559.
[12] READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains: a review and perspectives[J]. Journal of Artificial Intelligence Research, 2021, 70: 683-718.
[13] READ J, MARTINO L, LUENGO D. Efficient Monte Carlo methods for multi-dimensional learning with classifier chains[J]. Pattern Recognition, 2014, 47(3): 1535-1546.
[14] JIA B B, ZHANG M L. Multi-dimensional classification via kNN feature augmentation[J]. Pattern Recognition, 2020, 106: 107423.
[15] WANG H B, CHEN C, LIU W W, et al. Incorporating label embedding and feature augmentation for multi-dimensional classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 6178-6185.
[16] BACH F. Breaking the curse of dimensionality with convex neural networks[J]. Journal of Machine Learning Research, 2017, 18(19): 1-53.
[17] 徐洪峰, 孙振强. 多标签学习中基于互信息的快速特征选择方法[J]. 计算机应用, 2019, 39(10): 2815-2821.
XU H F, SUN Z Q. Fast feature selection method based on mutual information in multi-label learning[J]. Journal of Computer Applications, 2019, 39(10): 2815-2821.
[18] TANG J, CHEN W H, WANG K, et al. Probability-based label enhancement for multi-dimensional classification[J]. Information Sciences, 2024, 653: 119790.
[19] PERETZ O, KOREN M, KOREN O. Naive Bayes classifier an ensemble procedure for recall and precision enrichment[J]. Engineering Applications of Artificial Intelligence, 2024, 136: 108972.
[20] DIGITALE J C, MARTIN J N, GLYMOUR M M. Tutorial on directed acyclic graphs[J]. Journal of Clinical Epidemiology, 2022, 142: 264-267.
[21] JIA B B, ZHANG M L. Maximum margin multi-dimensional classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7185-7198.
[22] LIU X Y, ZHU J H, TIAN Z Q, et al. Multi-dimensional classification via class space fusion and comprehensive label correlations[J]. Information Fusion, 2024, 111: 102521.
[23] 朱颢东, 陈宁, 李红婵. 优化的互信息特征选择方法[J]. 计算机工程与应用, 2010, 46(26): 122-124.
ZHU H D, CHEN N, LI H C. Optimized mutual information feature selection method[J]. Computer Engineering and Applications, 2010, 46(26): 122-124.
[24] HUANG L, ZHOU X Q, SHI L H, et al. Time series feature selection method based on mutual information[J]. Applied Sciences, 2024, 14(5): 1960.
[25] ZHANG Q L, LIU S P, WANG J, et al. Feature selection for multi-labeled data based on label enhancement technique and mutual information[J]. Information Sciences, 2024, 679: 121113.
[26] 贾彬彬. 基于依赖关系建模的多维分类方法研究[D]. 南京: 东南大学, 2022.
JIA B B. Research on multi-dimensional classification appr-oaches via class dependencies modeling[D]. Nanjing: Southeast University, 2022.
[27] 谢爱锋. 基于互信息的过滤式特征选择算法研究[D]. 长春: 长春工业大学, 2023.
XIE A F. Research on filter feature selection algorithm based on mutual information[D]. Changchun: Changchun University of Technology, 2023.
[28] 李占山, 杨云凯, 张家晨. 基于熵权法的过滤式特征选择算法[J]. 东北大学学报(自然科学版), 2022, 43(7): 921-929.
LI Z S, YANG Y K, ZHANG J C. Filtering feature selection algorithm based on entropy weight method[J]. Journal of Northeastern University (Natural Science), 2022, 43(7): 921-929.
[29] DEM?AR J. Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7: 1-30. |