
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (15): 14-35.DOI: 10.3778/j.issn.1002-8331.2411-0136
古力米热·阿吾旦,叶俊翔,玛依拉·阿不都克力木,王梦飞,哈里旦木·阿布都克里木,阿布都克力木·阿布力孜
出版日期:2025-08-01
发布日期:2025-07-31
Awudan Gulimire, YE Junxiang, Abudukelimu Mayila, WANG Mengfei, Abudukelimu Halidanmu, Abulizi Abudukelimu
Online:2025-08-01
Published:2025-07-31
摘要: 肺癌是最致命的癌症类型之一,而肺结节作为肺癌的早期症状,严重威胁人们的生命健康。基于深度学习的肺结节CT图像的分割与分类技术,可以帮助医生快速、准确地诊断出早期结节,对于肺癌的治疗具有重要的临床价值。为了深入研究肺结节CT图像分割与分类技术,介绍了常用数据集及评价指标;着重从两个方面对深度学习肺结节CT图像分割与分类模型进行综述:基于U-Net的单网络结构模型与多网络结构模型分割方法、基于卷积神经网络的特征融合和纹理特征分类方法;结合具体实验总结了近五年国内外研究的创新点,以及各类模型的优缺点。最后,展望了该领域的未来发展方向,以期为该领域的后续研究提供理论参考和借鉴。
古力米热·阿吾旦, 叶俊翔, 玛依拉·阿不都克力木, 王梦飞, 哈里旦木·阿布都克里木, 阿布都克力木·阿布力孜. 基于深度学习的肺结节CT图像分割与分类研究综述[J]. 计算机工程与应用, 2025, 61(15): 14-35.
Awudan Gulimire, YE Junxiang, Abudukelimu Mayila, WANG Mengfei, Abudukelimu Halidanmu, Abulizi Abudukelimu. Review of Deep Learning-Based Segmentation and Classification of CT Images of Lung Nodules[J]. Computer Engineering and Applications, 2025, 61(15): 14-35.
| [1] SONG J D, LIU Z Y, ZHONG W Z, et al. Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis[J]. Scientific Reports, 2016, 6: 38282. [2] WU W H, GAO L, DUAN H H, et al. Segmentation of pulmonary nodules in CT images based on 3D-UNET combined with three-dimensional conditional random field optimization[J]. Medical Physics, 2020, 47(9): 4054-4063. [3] YING X D, GUO H, MA K, et al. X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10611-10620. [4] SETHY P K, GEETHA DEVI A, PADHAN B, et al. Lung cancer histopathological image classification using wavelets and AlexNet[J]. Journal of X-Ray Science and Technology, 2023, 31(1): 211-221. [5] SAIKIA T, HANSDAH M, SINGH K K, et al. Classification of lung nodules based on transfer learning with K-nearest neighbor (KNN)[C]//Proceedings of the 2022 IEEE International Conference on Imaging Systems and Techniques. Piscataway: IEEE, 2022: 1-6. [6] PRIYA M M M A, JAWHAR D S J, GEISA D J M. Optimal deep belief network with opposition based pity beetle algorithm for lung cancer classification: a DBNOPBA approach[J]. Computer Methods and Programs in Biomedicine, 2021, 199: 105902. [7] 沈权猷, 张小波, 李文豪, 等. U-Net在肺结节分割中的应用进展[J]. 计算机应用, 2023, 43(S1): 250-257. SHEN Q Y, ZHANG X B, LI W H, et al. Application progress of U-Net in lung nodule segmentation[J]. Journal of Computer Applications, 2023, 43(S1): 250-257. [8] 冯龙锋, 陈英, 周滔辉, 等. CT图像肺及肺病变区域分割方法综述[J]. 中国图象图形学报, 2022, 27(3): 722-749. FENG L F, CHEN Y, ZHOU T H, et al. Review of human lung and lung lesion regions segmentation methods based on CT images[J]. Journal of Image and Graphics, 2022, 27(3): 722-749. [9] ARMATO III S G, MCLENNAN G, BIDAUT L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans[J]. Medical Physics, 2011, 38(2): 915-931. [10] SETIO A A A, TRAVERSO A, DE BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1-13. [11] PEDROSA J, ARESTA G, FERREIRA C, et al. LNDb: a lung nodule database on computed tomography[J]. arXiv:1911. 08434, 2019. [12] YAN K, WANG X S, LU L, et al. DeepLesion: automated deep mining, categorization and detection of significant radiology image findings using large-scale clinical lesion annotations[J]. arXiv.1710.01766, 2017. [13] JIAN M, ZHANG H, SHAO M, et al. A cross spatio-temporal pathology-based lung nodule dataset[J]. arXiv:2406.18018, 2024. [14] JIAN M W, CHEN H Y, ZHANG Z Y, et al. A lung nodule dataset with histopathology-based cancer type annotation[J]. Scientific Data, 2024, 11: 824. [15] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [16] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [17] 梁隆恺, 付鹤, 陈峰蔚, 等. 深度学习与医学图像处理[M]. 北京: 人民邮电出版社, 2023: 95-99. LIANG L K, FU H, CHEN F W, et al. Deep learning and medical image processing[M]. Beijing: Posts & Telecom Press, 2023: 95-99. [18] MENG H, DONG Z, YAN M, et al. The sobel operator combined with double-input U-Net model for lung nodule segmentation[Z]. Available at SSRN 4846073, 2024. [19] ALBALAWI E, NEAL J E S, JOYS N M, et al. Hybrid healthcare unit recommendation system using computational techniques with lung cancer segmentation[J]. Frontiers in Medicine, 2024, 11: 1429291. [20] AKILA AGNES S, ARUN SOLOMON A, KARTHICK K. Wavelet U-Net++ for accurate lung nodule segmentation in CT scans: improving early detection and diagnosis of lung cancer[J]. Biomedical Signal Processing and Control, 2024, 87: 105509. [21] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. U-Net++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11. [22] HUANG H M, LIN L F, TONG R F, et al. U-Net3+: a full-scale connected UNet for medical image segmentation[C]//Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 1055-1059. [23] LENG P F, XU Z F, ZHU Z H, et al. Blend U-Net: redesigning skip connections to obtain multiscale features forLung CT images segmentation[J]. Current Medical Imaging Formerly Current Medical Imaging Reviews, 2023, 20: e15734056268487. [24] MAQSOOD M, YASMIN S, MEHMOOD I, et al. An efficient DA-Net architecture for lung nodule segmentation[J]. Mathematics, 2021, 9(13): 1457. [25] WANG K, ZHANG X B, ZHANG X H, et al. Multi-granularity scale-aware networks for hard pixels segmentation of pulmonary nodules[J]. Biomedical Signal Processing and Control, 2021, 69: 102890. [26] ZHOU Z X, GOU F F, TAN Y L, et al. A cascaded multi-stage framework for automatic detection and segmentation of pulmonary nodules in developing countries[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5619-5630. [27] FAUSTO M, NASSIR N, SEYED A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[J]. arXiv:1606.04797, 2016. [28] MA X P, SONG H D, JIA X, et al. An improved V-Net lung nodule segmentation model based on pixel threshold separ-ation and attention mechanism[J]. Scientific Reports, 2024, 14: 4743. [29] LIU J J, LI Y Q, LI W T, et al. Multiscale lung nodule segmentation based on 3D coordinate attention and edge enhancement[J]. Electronic Research Archive, 2024, 32(5): 3016-3037. [30] LI L, PENG F P, PAN J H. Improved 3D multiscale V-Net network-based segmentation of lung nodules[C]//Proceedings of the 2023 International Conference on Computer, Vision and Intelligent Technology. New York: ACM, 2023: 1-7. [31] XU X R, DU L Y, YIN D S. Dual-branch feature fusion S3D V-Net network for lung nodules segmentation[J]. Journal of Applied Clinical Medical Physics, 2024, 25(6): e14331. [32] CHEN L Y, GU D D, CHEN Y B, et al. An artificial-intelligence lung imaging analysis system(ALIAS) for population-based nodule computing in CT scans[J]. Computerized Medical Imaging and Graphics, 2021, 89: 101899. [33] ALI Z, IRTAZA A, MAQSOOD M. An IOMT assisted lung nodule segmentation using enhanced receptive field-based modified UNet[J]. Personal and Ubiquitous Computing, 2024, 28(1): 93-107. [34] CHEN H, LIU J Y, LU L J, et al. Volumetric segmentation of ground glass nodule based on 3D attentional cascaded residual U-Net and conditional random field[J]. Medical Phy-sics, 2022, 49(2): 1097-1107. [35] DUTANDE P, BAID U, TALBAR S. LNCDS: a 2D-3D cascaded CNN approach for lung nodule classification, detection and segmentation[J]. Biomedical Signal Processing and Control, 2021, 67: 102527. [36] SHI J S, YE Y G, ZHU D X, et al. Comparative analysis of pulmonary nodules segmentation using multiscale residual U-Net and fuzzy C-means clustering[J]. Computer Methods and Programs in Biomedicine, 2021, 209: 106332. [37] 卢小燕, 徐杨, 袁文昊. 用于肺部病灶图像分割的多尺度稠密融合网络[J]. 计算机应用, 2023, 43(10): 3282-3289. LU X Y, XU Y, YUAN W H. Multiscale dense fusion network for lung lesion image segmentation[J]. Journal of Computer Applications, 2023, 43(10): 3282-3289. [38] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer, 2018: 3-19. [39] ZHAO J, DANG M, CHEN Z, et al. Lung nodule segment-ation algorithm fusing multi-feature and attentional mechanism[J]. Computer System, 2022, 109: 1-7. [40] 林洁沁, 黄新. 多尺度特征融合注意力新冠肺炎病灶分割网络[J]. 激光杂志, 2024, 45(3): 168-174. LIN J Q, HUANG X. COVID-19 lesion segmentation network based on multi-scale feature fusion attention[J]. Laser Journal, 2024, 45(3): 168-174. [41] 万黎明, 张小乾, 刘知贵, 等. 基于高效通道注意力的UNet肺结节CT图像分割[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 66-75. WAN L M, ZHANG X Q, LIU Z G, et al. CT image segmentation of UNet pulmonary nodules based on efficient channel attention[J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(3): 66-75. [42] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. [43] 丰晓钰, 王明泉, 李磊磊, 等. 基于高级语义及注意力的肺结节分割模型[J]. 现代电子技术, 2024, 47(5): 60-64. FENG X Y, WANG M Q, LI L L, et al. Pulmonary nodule segmentation model based on advanced semantics and attention[J]. Modern Electronics Technique, 2024, 47(5): 60-64. [44] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13713-13722. [45] FAN X S, LU Y Q, HOU J C, et al. DMC-UNet-based segmentation of lung nodules[J]. IEEE Access, 2023, 11: 110809-110826. [46] CAO H C, LIU H, SONG E M, et al. Dual-branch residual network for lung nodule segmentation[J]. Applied Soft Computing, 2020, 86: 105934. [47] CHEN Q, XIE W, ZHOU P, et al. Multi-crop convolutional neural networks for fast lung nodule segmentation[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(5): 1190-1200. [48] BBOSA R, GUI H, LUO F, et al. MRUNet-3D: a multi-stride residual 3D UNet for lung nodule segmentation[J]. Methods, 2024, 226: 89-101. [49] LUO Y, CAO M, CHANG X. Pulmonary nodule segmentation network based on res select kernel contextual U-Net[J]. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2024, 7(4): 041004. [50] 陈亚浩, 韩林, 刘艳青, 等. 基于RDU-Net网络的肺部CT分割算法研究[J]. 计算机应用与软件, 2024, 41(7): 177-183. CHEN Y H, HAN L, LIU Y Q, et al. Lung ct segmentation algorithm based on RDU-Net network[J]. Computer Applic-ations and Software, 2024, 41(7): 177-183. [51] SINGADKAR G, MAHAJAN A, THAKUR M, et al. Deep deconvolutional residual network based automatic lung nodule segmentation[J]. Journal of Digital Imaging, 2020, 33(3): 678-684. [52] JIANG J, HU Y C, LIU C J, et al. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2019, 38(1): 134-144. [53] LIU H, CAO H C, SONG E M, et al. A cascaded dual-pathway residual network for lung nodule segmentation in CT images[J]. Physica Medica, 2019, 63: 112-121. [54] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015. [55] SELVADASS S, BRUNTHA P M, SAGAYAM K M, et al. SAtUNet: series atrous convolution enhanced U-Net for lung nodule segmentation[J]. International Journal of Imaging Systems and Technology, 2024, 34(1): e22964. [56] WU Z Z, LI X S, ZUO J H. RAD-UNet: research on an improved lung nodule semantic segmentation algorithm based on deep learning[J]. Frontiers in Oncology, 2023, 13: 1084096. [57] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [58] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethin-king atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017. [59] WANG J T, QI M, XIANG Z W, et al. SaraNet: semantic aggregation reverse attention network for pulmonary nodule segmentation[J]. Computers in Biology and Medicine, 2024, 177: 108674. [60] WANG Z K, ZOU Y N, LIU P X. Hybrid dilation and attention residual U-Net for medical image segmentation[J]. Computers in Biology and Medicine, 2021, 134: 104449. [61] VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. , 2017: 1-11. [62] HOU J C, YAN C, LI R, et al. Lung nodule segmentation algorithm with SMR-UNet[J]. IEEE Access, 2023, 11: 34319-34331. [63] CANAYAZ M, ?EHRIBANO?LU S, ?ZG?K?E M, et al. A comprehensive exploration of deep learning approaches for pulmonary nodule classification and segmentation in chest CT images[J]. Neural Computing and Applications, 2024, 36(13): 7245-7264. [64] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. [65] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. [66] GAUTAM N, BASU A, SARKAR R. Lung cancer detection from thoracic CT scans using an ensemble of deep learning models[J]. Neural Computing and Applications, 2024, 36(5): 2459-2477. [67] WANG C W, XU R T, XU S B, et al. Accurate lung nodule segmentation with detailed representation transfer and soft mask supervision[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(12): 18381-18393. [68] BUDATI M, KARUMURI R. An intelligent lung nodule segmentation framework for early detection of lung cancer using an optimized deep neural system[J]. Multimedia Tools and Applications, 2024, 83(12): 34153-34174. [69] WANG H X, XIAO N, LUO S C, et al. Multi-scale dense selective network based on border modeling for lung nodule segmentation[J]. International Journal of Computer Assisted Radiology and Surgery, 2023, 18(5): 845-853. [70] CAI Y, LIU Z, ZHANG Y, et al. MDFN: a multi-level dyna-mic fusion network with self-calibrated edge enhancement for lung nodule segmentation[J]. Biomedical Signal Proces-sing and Control, 2024, 87: 105507. [71] 马金林, 邓媛媛, 马自萍. 肝脏肿瘤CT图像深度学习分割方法综述[J]. 中国图象图形学报, 2020, 25(10): 2024-2046. MA J L, DENG Y Y, MA Z P. Review of deep learning segmentation methods for CT images of liver tumors[J]. Journal of Image and Graphics, 2020, 25(10): 2024-2046. [72] LEE B J, MARTIROSYAN S T, KHAN Z, et al. Attention-based automated chest CT image segmentation method of COVID-19 lung infection[C]//Proceedings of the 2022 IEEE 22nd International Conference on Bioinformatics and Bioengineering. Piscataway: IEEE, 2022: 158-163. [73] ZHAO J T, DANG M, CHEN Z H, et al. DSU-Net: distraction-Sensitive U-Net for 3D lung tumor segmentation[J]. Engineering Applications of Artificial Intelligence, 2022, 109: 104649. [74] BANU S F, SARKER M M K, ABDEL-NASSER M, et al. AWEU-Net: an attention-aware weight excitation U-Net for lung nodule segmentation[J]. Applied Sciences, 2021, 11(21): 10132. [75] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [76] PENG Y J, ZHANG T, GUO Y F. Cov-TransNet: dual branch fusion network with transformer for COVID-19 infection segmentation[J]. Biomedical Signal Processing and Control, 2023, 80: 104366. [77] 程照雪, 李阳, 周妍, 等. 增强边缘特征的肺结节分割模型[J]. 计算机工程与应用, 2023, 59(24): 185-195. CHENG Z X, LI Y, ZHOU Y, et al. Lung nodule segmentation model with enhanced edge features[J]. Computer Engineering and Applications, 2023, 59(24): 185-195. [78] WU Z T, ZHOU Q J, WANG F. Coarse-to-fine lung nodule segmentation in CT images with image enhancement and dual-branch network[J]. IEEE Access, 2021, 9: 7255-7262. [79] WANG H F, ZHU H, DING L H, et al. Attention pyramid pooling network for artificial diagnosis on pulmonary nodules[J]. PLoS One, 2024, 19(5): e0302641. [80] ZHENG R, WEN H Q, ZHU F, et al. Attention-guided deep neural network with a multichannel architecture for lung nodule classification[J]. Heliyon, 2024, 10(1): e23508. [81] 李炳淑, 吕楠, 孙福振. 基于多尺度结合全局和局部注意力的肺结节良恶性分类网络[J]. 山东科技大学学报(自然科学版), 2023, 42(6): 97-105. LI B S, Lü N, SUN F Z. Benign and malignant pulmonary nodule classification network based on multi-scale combined with global and local attention[J]. Journal of Shandong University of Science and Technology (Natural Science), 2023, 42(6): 97-105. [82] TANG D F, XIAO T, YANG F, et al. VSNet: classification of pulmonary nodules in 3D using vision transformer and sequence spatial attention mechanism[J]. Multimedia Tools and Applications, 2025, 84(14): 13885-13903. [83] REN C, HOU S M. A hybrid deep learning approach for lung nodule classification[J]. Frontiers in Computing and Intelligent Systems, 2024, 8(1): 6-12. [84] KAREN S, ANDREW Z. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. [85] NAIK A, EDLA D R, PARNE S R, et al. Weighted ensemble CNN for lung nodule classification: an evolutionary app-roach[J]. Multimedia Tools and Applications, 2024, 83: 68441-68466. [86] MOBINY A, YUAN P Y, CICALESE P A, et al. Memory-augmented Capsule network for adaptable lung nodule classification[J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2869-2879. [87] MA L, WAN C Y, HAO K X, et al. A novel fusion algorithm for benign-malignant lung nodule classification on CT images[J]. BMC Pulmonary Medicine, 2023, 23(1): 474. [88] QIAO J P, FAN Y L, ZHANG M W, et al. Ensemble framework based on attributes and deep features for benign-malignant classification of lung nodule[J]. Biomedical Signal Processing and Control, 2023, 79: 104217. [89] AMINI F, AMJADIFARD R, MANSOURI A. Fuzzy information granulation towards benign and malignant lung nodules classification[J]. Computer Methods and Programs in Biomedicine Update, 2024, 5: 100153. [90] LUAN S Z, CHEN C, ZHANG B C, et al. Gabor convolutional networks[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4357-4366. [91] SHARIATY F, OROOJI M, VELICHKO E N, et al. Texture appearance model, a new model-based segmentation paradigm, application on the segmentation of lung nodule in the CT scan of the chest[J]. Computers in Biology and Medicine, 2022, 140: 105086. [92] SAIHOOD A, ASAAD HASAN M, MAHMOOD SHNAWA S, et al. Multiside graph neural network-based attention for local co-occurrence features fusion in lung nodule classification[J]. Expert Systems with Applications, 2024, 252: 124149. [93] SAIHOOD A, KARSHENAS H, NILCHI A R N. Deep fusion of gray level co-occurrence matrices for lung nodule classification[J]. PLoS One, 2022, 17(9): e0274516. [94] DAS S, G L, PRAKASH S J, et al. Lung cancer detection and classification using transfer learning with pre-trained VGG19 convolutional neural networks[C]//Proceedings of the 2023 3rd International Conference on Emerging Frontiers in Electrical and Electronic Technologies. Piscataway: IEEE, 2023: 1-6. [95] MUHTASIM N, HANY U, ISLAM T, et al. Artificial intelligence for detection of lung cancer using transfer learning and morphological features[J]. The Journal of Supercomputing, 2024, 80(10): 13576-13606. [96] SINGH L, CHOUDHARY H K, SINGH S, et al. Automated detection of lung cancer using transfer learning based deep learning[C]//Proceedings of the 2022 International Conference on Computational Intelligence and Sustainable Engineering Solutions. Piscataway: IEEE, 2022: 500-504. [97] ALSHAMRANI K, ALSHAMRANI H A. Classification of chest CT lung nodules using collaborative deep learning model[J]. Journal of Multidisciplinary Healthcare, 2024, 17: 1459-1472. [98] SAKSHIWALA, SINGH M P. A new framework for multi-scale CNN-based malignancy classification of pulmonary lung nodules[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(5): 4675-4683. [99] WANG C L, YI Y Q, WANG Y D, et al. ContrastDiagnosis: enhancing interpretability in lung nodule diagnosis using contrastive learning[J]. arXiv:2403.05280, 2024. [100] SUN L, ZHANG M, LU Y, et al. Nodule-CLIP: lung nodule classification based on multi-modal contrastive learning[J]. Computers in Biology and Medicine, 2024, 175: 108505. [101] SHAUKAT F, ANWAR S M, PARIDA A, et al. Lung-CADex: fully automatic zero-shot detection and classification of lung nodules in thoracic CT images[J]. arXiv:2407.02625, 2024 [102] WANG N, GU Y, ZHANG X S, et al. A classification study of pulmonary nodule CT images based on supervised contrast learning[C]//Proceedings of the 2023 International Conference on Image Processing, Computer Vision and Mac-hine Learning. Piscataway: IEEE, 2023: 160-163. [103] WANG H F, ZHU H, DING L H, et al. A diagnostic classification of lung nodules using multiple-scale residual network[J]. Scientific Reports, 2023, 13: 11322. [104] 张琮昊, 迟子秋, 王占全, 等. 基于多尺度特征互补和聚合约束的肺结节分类方法[J]. 华东理工大学学报(自然科学版), 2024, 50(3): 435-441. ZHANG C H, CHI Z Q, WANG Z Q, et al. Pulmonary nodule classification network based on multi-scale feature complementation and aggregate constraint[J]. Journal of East China University of Science and Technology, 2024, 50(3): 435-441. [105] TANG N, ZHANG R, WEI Z L, et al. Improving the performance of lung nodule classification by fusing structured and unstructured data[J]. Information Fusion, 2022, 88: 161-174. [106] LIU Z A, YUAN Y, ZHANG C, et al. Hierarchical classification of early microscopic lung nodule based on cascade network[J]. Health Information Science and Systems, 2024, 12(1): 13. [107] ZHAO X P, XU J J, LIN Z C, et al. BiCFormer: swin Transformer based model for classification of benign and malignant pulmonary nodules[J]. Measurement Science and Technology, 2024, 35(7): 075402. [108] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [109] 包强强, 唐思源, 谷宇. 深度学习检测肺结节难点问题综述[J]. 计算机工程与应用, 2024, 60(19): 18-31. BAO Q Q, TANG S Y, GU Y. Review of difficult problems of deep learning to detect lung nodules[J]. Computer Engineering and Applications, 2024, 60(19): 18-31. |
| [1] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [2] | 庞俊, 马志芬, 林晓丽, 王蒙湘. 结合GAT与卷积神经网络的知识超图链接预测[J]. 计算机工程与应用, 2025, 61(9): 194-201. |
| [3] | 陈虹, 由雨竹, 金海波, 武聪, 邹佳澎. 融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法[J]. 计算机工程与应用, 2025, 61(9): 315-324. |
| [4] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [5] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [6] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [7] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [8] | 孟维超, 卞春江, 聂宏宾. 复杂背景下低信噪比红外弱小目标检测方法[J]. 计算机工程与应用, 2025, 61(8): 183-193. |
| [9] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [10] | 吕光宏, 王坤. 时空图注意力机制下的SDN网络动态流量预测[J]. 计算机工程与应用, 2025, 61(8): 267-273. |
| [11] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [12] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [13] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [14] | 姚丽莎. 深度度量注意力混合模型表情识别方法[J]. 计算机工程与应用, 2025, 61(7): 245-254. |
| [15] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||