计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 227-237.DOI: 10.3778/j.issn.1002-8331.2403-0143

• 模式识别与人工智能 • 上一篇    下一篇

PCB工艺FMEA领域知识图谱构建与应用

叶进, 林琦越,唐欣,王秋祥,胡宁   

  1. 1.广西大学 计算机与电子信息学院,南宁 530004
    2.工业和信息化部 电子第五研究所,广州 511370
    3.工业装备质量大数据工业和信息化部重点实验室,广州 511370
    4.桂林电子科技大学,广西 桂林541004
  • 出版日期:2025-06-01 发布日期:2025-05-30

Construction and Application of Knowledge Graph in PCB Process FMEA Field

YE Jin, LIN Qiyue, TANG Xin, WANG Qiuxiang, HU Ning   

  1. 1.School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
    2.The Fifth Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 511370, China
    3.Key Laboratory of Industrial Equipment Quality Big Data, MIIT, Guangzhou 511370, China
    4.Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • Online:2025-06-01 Published:2025-05-30

摘要: 随着电子产品的快速发展,产业链厂商对印制电路板(PCB)的失效模式和影响分析(FMEA)提出了更高水平要求,传统的FMEA分析方法已经不能满足复杂电子产品的需求。为此提出了一套PCB工艺FMEA知识图谱构建与应用框架,实现端到端的FMEA分析新模式。在图谱构建过程中,针对大量实体为复杂句子的特点,训练了一个加入PCB与FMEA特征词典的FLEBERT NER模型,实现对失效数据的实体识别,实验对比证明效果良好;对识别的实体采用Sentence-BERT结合FLEBERT预训练模型进行实体对齐,提升知识的质量;通过Neo4j进行知识存储完成知识图谱构建。基于已构建的知识图谱,搭建了FMEA知识图谱平台,初步实现了知识探索、知识问答和知识推荐的应用,展示了知识图谱技术在PCB工艺FMEA分析领域具备良好的应用前景。

关键词: 知识图谱, 印制电路板(PCB), 失效模式和影响分析(FMEA), 命名实体识别(NER), BERT

Abstract: With the rapid development of electronic products, industrial chain manufacturers have put forward higher requirements for the failure mode and effect analysis (FMEA) of printed circuit boards (PCB), and the traditional FMEA analysis method can no longer meet the needs of complex electronic products. This paper proposes a set of PCB process FMEA knowledge graph construction and application frameworks to realize a novel end-to-end FMEA analysis model. During the graph construction, given the characteristics of a large number of entities in complex sentences, a named entity recognition (NER) model of FLEBERT with PCB and FMEA feature dictionaries added is trained to recognize the failed data, and the experimental comparison proves that the effect is good. The entities after recognition use Sentence-BERT combined with the FLEBERT pre-training model for entity alignment to improve the quality of knowledge. Finally, Neo4j is used for knowledge storage to complete the construction of the knowledge graph. Based on the constructed knowledge graph, this paper builds the FMEA knowledge graph platform, and initially realizes the application of knowledge exploration, knowledge Q&A and knowledge recommendation, demonstrating that knowledge graph technology has good application prospects in the PCB process FMEA analysis field.

Key words: knowledge graph, printed circuit boards(PCB), failure mode and effect analysis(FMEA), named entity recognition (NER), BERT