[1] 李琼, 考月英, 张莹, 等. 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164.
LI Q, KAO Y Y, ZHANG Y, et al. Review on object detection in UAV aerial images[J]. Journal of Graphics, 2024, 45(6): 1145-1164.
[2] 徐彦威, 李军, 董元方, 等. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18(9): 2221-2238.
XU Y W, LI J, DONG Y F, et al. Survey of development of YOLO object detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9) : 2221-2238.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[4] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[5] REDMON J, FARHADIA. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] VARGHESE R, SAMBATH M. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//Proceedings of the International Conference on Advances in Data Engineering and Intelligent Computing Systems, 2024: 1-6.
[7] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[J]. arXiv:2410.17725, 2024.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[9] 罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报, 2024, 45(6): 241-270.
LUO X D, WU Y Q, CHEN J L. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 241-270.
[10] 胡惠娟, 秦一锋, 徐鹤, 等. 面向无人机航拍图像的YOLOv8目标检测改进算法[J]. 计算机科学, 2025, 52(4): 202-211.
HU H J, QIN Y F, XU H, et al. An Improved YOLOv8 object detection algorithm for UAV aerial images [J]. Computer Science, 2025, 52(4): 202-211.
[11] 闫建红, 冉同霄. 基于YOLOv8的轻量化无人机图像目标检测算法[J]. 图学学报, 2024, 45(6): 1328-1337.
YAN J H, RAN T X. Lightweight UAV image target detection algorithm based on YOLOv8[J]. Journal of Graphics, 2024, 45(6): 1328-1337.
[12] 范博淦, 王淑青, 陈开元. 基于改进YOLOv8的航拍无人机小目标检测模型[J/OL]. 计算机应用: 1-11[2024-12-16]. https://link.cnki.net/urlid/51.1307.tp.20241017.1040.004.
FAN B J, WANG S Q, CHEN K Y. Small target detection model for aerial photography UAV based on improved YOLOv8[J/OL]. Journal of Computer Applications: 1-11[2024-12-16]. https://link.cnki.net/urlid/51.1307.tp.20241017.
1040.004.
[13] 付锦燚, 张自嘉, 孙伟, 等. 改进YOLOv8 的航拍图像小目标检测算法 [J]. 计算机工程与应用, 2024, 60(6): 100-109.
FU J Y, ZHANG Z J, SUN W, et al. Improved YOLOv8 small target detection algorithm in aerial images [J]. Computer Engineering and Applications, 2024, 60(6): 100-109.
[14] QIU X, CHEN Y, SUN C, et al. DMFF-YOLO: YOLOv8 based on dynamic multiscale feature fusion for object detection on UAV aerial photography[J]. IEEE Access, 2024, 12: 125160-125169.
[15] 廖宁生, 曹天秀, 刘科言, 等. 复合特征与多尺度融合的无人机小目标检测算法[J]. 计算机工程与应用, 2025, 61(3): 111-120.
LIAO N S, CAO T X, LIU K Y, et al. Small target detection algorithm for UAV based on composite feature and multi-scale fusion[J]. Computer Engineering and Applications, 2025, 61 (3): 111-120.
[16] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464.
ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context in formation and attention gate [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464.
[17] JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]//Proceedings of the 29th International Conference on Neural Information Processing Systems, 2015: 2017-2025.
[18] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[20] SI Y, XU H, ZHU X, et al. SCSA: exploring the synergistic effects between spatial and channel attention[J]. arXiv:2407.05128, 2024.
[21] WU Y, HE K. Group normalization[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[22] YIN X, GOUDRIAAN J A N, LANTINGA E A, et al. A flexible sigmoid function of determinate growth[J]. Annals of Botany, 2003, 91(3): 361-371.
[23] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[24] DAI W, LIU R, WU Z, et al. Exploiting scale-variant attention for segmenting small medical objects[J]. arXiv:2407. 07720, 2024.
[25] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[26] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[27] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS-improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 5561-5569.
[28] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019: 213-226.
[29] 李姝, 李思远, 刘国庆. 基于YOLOv8无人机航拍图像的小目标检测算法研究[J]. 小型微型计算机系统, 2024, 45(9): 2165-2174.
LI S, LI S Y, LIU G Q. Research on small target detection algorithm based on YOLOv8 UAV aerial images[J]. Journal of Chinese Computer Systems, 2024, 45(9): 2165-2174.
[30] 李岩超, 史卫亚, 冯灿. 面向无人机航拍小目标检测的轻量级YOLOv8 检测算法 [J]. 计算机工程与应用, 2024, 60(17): 167-178.
LI Y C, SHI W Y, FENG C. A lightweight YOLOv8 detection algorithm for small object detection in UAV aerial photography[J]. Computer Engineering and Applications, 2024, 60(17): 167-178.
[31] 王舒梦, 徐慧英, 朱信忠, 等. 基于改进YOLOv8n航拍轻量化小目标检测算法: PECS-YOLO[J/OL]. 计算机工程: 1-16[2024-12-16]. https://doi.org/10.19678/j.issn.1000-3428.0069353.
WANG S M, XU H Y, ZHU X Z, et al. Lightweight small object detection algorithm based on improved YOLOv8n aerial photography: PECS-YOLO[J/OL]. Computer Engineering: 1-16[2024-12-16]. https://doi.org/10.19678/j.issn.1000-3428. 0069353.
[32] 潘玮, 韦超, 钱春雨, 等. 面向无人机视角下小目标检测的YOLOv8s改进模型[J]. 计算机工程与应用, 2024, 60(9): 142-150.
PAN W, WEI C, QIAN C Y, et al. Improved YOLOv8s model for small object detection from perspective of drones [J]. Computer Engineering and Applications, 2024, 60(9): 142-150.
[33] HSIEH M R, LIN Y L, HSU W H. Drone-based object counting by spatially regularized regional proposal network[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4145-4153.
[34] LONG Y, GONG Y, XIAO Z, et al. Accurate object locali-
zation in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.
[35] ZHANG S, XIE Y, WAN J, et al. WiderPerson: a diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2019, 22(2): 380-393. |