[1] TEIXEIRA K, MIGUEL G, SILVA H S, et al. A survey on applications of unmanned aerial vehicles using machine learning[J]. IEEE Access, 2023(11): 117582-117621.
[2] KAUR R, SINGH S. A comprehensive review of object detection with deep learning[J]. Digital Signal Processing, 2023, 132: 103812.
[3] ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
[4] LIU Y, SUN P, WERGELES N, et al. A survey and performance evaluation of deep learning methods for small object detection[J]. Expert Systems with Applications, 2021, 172: 114602.
[5] CHEN G, WANG H, CHEN K, et al. A survey of the four pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52(2): 936-953.
[6] CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488.
[7] 张博. 基于深度学习的无人机航拍图像小目标检测方法研究[D]. 海口: 海南大学, 2023.
ZHAN B. Research on small object detection method of UAV aerial image based on deep learning[D]. Haikou: Hainan University, 2023.
[8] 董刚, 谢维成, 黄小龙, 等. 深度学习小目标检测算法综述[J]. 计算机工程与应用, 2023, 59(11): 16-27.
DONG G, XIE W C, HUANG X L, et al. Review of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2023, 59(11): 16-27.
[9] 姜贸翔, 司占军, 王晓喆. 改进RT-DETR的无人机图像目标检测算法[J]. 计算机工程与应用, 2025, 61(1): 98-108.
JIANG M X, SI Z J, WANG X Z. Improved target detection algorithm for UAV images with RT-DETR[J]. Computer Engineering and Applications, 2025, 61(1): 98-108.
[10] MA C, FU Y, WANG D, et al. YOLO-UAV: object detection method of unmanned aerial vehicle imagery based on efficient multi-scale feature fusion[J]. IEEE Access, 2023, 11: 126857-126878.
[11] 马俊燕, 常亚楠. MFE-YOLOX: 无人机航拍下密集小目标检测算法[J]. 重庆邮电大学学报(自然科学版), 2024, 36(1): 128-135.
MA J Y, CHANG Y N. MFE-YOLOX: dense small target detection algorithm under UAV aerial photography [J]. Journal?of?Chongqing?University?of?Posts?and?Telecommunications (Natural?Science), 2024, 36(1): 128-135.
[12] 梁秀满, 贾梓涵, 于海峰, 等. 基于改进YOLOv7的无人机图像目标检测算法[J]. 无线电工程, 2024, 54(4): 937-946.
LIANG X M, JIA Z H, YU H F, et al. UAV image object detection algorithm based on improved YOLOv7[J]. Radio Engineering, 2024, 54(4): 937-946.
[13] WANG G, CHEN Y, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 1-27.
[14] 蒋伟, 王万虎, 杨俊杰. AEM-YOLOv8s: 无人机航拍图像的小目标检测[J]. 计算机工程与应用, 2024, 60(17): 191-202.
JIANG W, WANG W H, YANG J J. AEM-YOLOv8s: small target detection algorithm for UAV aerial images[J]. Computer Engineering and Applications, 2024, 60(17): 191-202.
[15] ZHANG Z. Drone-YOLO: an efficient neural network method for target detection in drone images[J]. Drones, 2023, 7(8): 1-23.
[16] 梁燕, 何孝武, 邵凯, 等. 改进YOLOv8的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2025, 61(1): 121-130.
LIANG Y, HE X W, SHAO K, et al. Target detection algorithm for UAV images based on improved YOLOv8[J]. Computer Engineering and Applications, 2025, 61(1): 121-130.
[17] LI Y, LI Q, PAN J, et al. SOD-YOLO: small-object-detection algorithm based on improved YOLOv8 for UAV images[J]. Remote Sensing, 2024, 16(16): 3057.
[18] SIRISHA U, PRAVEEN S P, SRINIVASU P N, et al. Statistical analysis of design aspects of various YOLO-based deep learning models for object detection[J]. International Journal of Computational Intelligence Systems, 2023, 16(1): 126.
[19] GLENN J, AYUSH C, ALEX S, et al. Ultralytics/YOLOv5:?v6.1[EB/OL]. (2022-02-07)[2024-10-15]. https://github.com/ultralytics/yolov5/releases/tag/v6.1.
[20] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv: 2209.02976, 2022.
[21] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[22] GLENN J, AYUSH C, JING Q, et al. Ultralytics/YOLOv8:?v8.1.0[EB/OL]. (2023-02-10)[2024-10-15]. https://github.com/ultralytics/ultralytics/releases/tag/v8.1.0
[23] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[24] SUNKARA R, LUO T. No more strided convolutions or?pooling: a new CNN building block for low-resolution images and?small objects[C]//Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2022: 443-459.
[25] SUN R, FAN H, TANG Y, et al. Research on small target detection algorithm for UAV inspection scene based on SPD-conv[C]//Proceedings of the 4th International Conference on Computer Vision and Data Mining , 2024: 686-691.
[26] HASSANIN M, ANWAR S, RADWAN I, et al. Visual attention methods in deep learning: an in-depth survey[J]. Information Fusion, 2024, 108: 1-18.
[27] 颜豪男, 吕伏, 冯永安. 特征级自适应增强的无人机目标检测算法[J]. 计算机科学与探索, 2024, 18(6): 1566-1578.
YAN H N, LYU F, FENG Y A. Feature-level adaptive enhancement for UAV target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1566-1578.
[28] ZHU L, WANG X, KE Z, et al. BiFormer: vision transformer?
with?bi-level?routing?attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[29] DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
[30] DING X, CHEN H, ZHANG X, et al. Re-parameterizing your optimizers rather than architectures[J]. arXiv:2205. 15242, 2022.
[31] 闵锋, 况永刚, 郝琳琳, 等. 多分支特征映射的遥感图像目标检测算法[J]. 计算机科学与探索, 2024, 18(6): 1543-1555.
MIN F, KUANG Y G, HAO L L, et al. Remote sensing image object detection algorithm based on multi-branch feature mapping[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1543-1555.
[32] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[33] ZHANG H, ZHANG S. Focaler-IoU: more focused intersection over union loss[J]. arXiv:2401.10525, 2024.
[34] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019: 1-4.
[35] ZHAO Q, LIU B, LYU S, et al. TPH-YOLOv5++: boosting object detection on drone-captured scenarios with cross-layer asymmetric transformer[J]. Remote Sensing, 2023, 15(6): 1687.
[36] NGUYEN K, HUYNH N T, NGUYEN P C, et al. Detecting objects from space: an evaluation of deep-learning modern approaches[J]. Electronics, 2020, 9(4): 583 1-18.
[37] ZHOU P, LIU G J, WANG J, et al. Lightweight unmanned aerial vehicle video object detection based on spatial‐temporal correlation[J]. International Journal of Communication Systems, 2022, 35(17): 1-13. |