计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 67-82.DOI: 10.3778/j.issn.1002-8331.2407-0410

• 热点与综述 • 上一篇    下一篇

基于深度学习的短时交通流预测研究综述

熊章友,李卫军,朱晓娟,杨国梁,马馨瑜   

  1. 1.北方民族大学 计算机科学与工程学院,银川 750021 
    2.北方民族大学 图形图像智能处理国家民委重点实验室,银川 750021
  • 出版日期:2025-06-01 发布日期:2025-05-30

Short-Term Traffic Flow Prediction Based on Deep Learning

XIONG Zhangyou, LI Weijun, ZHU Xiaojuan, YANG Guoliang, MA Xinyu   

  1. 1.School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
    2.Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
  • Online:2025-06-01 Published:2025-05-30

摘要: 交通流预测是智能交通系统的重要组成部分,旨在准确估计未来特定时间间隔内特定区域的交通流量。随着车辆的增长和路网中不同区域之间的复杂时空关系,传统的交通预测方法难以准确描述交通数据的特征,而深度学习的预测方法能够更好地处理复杂的特征结构,因此,深度学习的方法已成为短时交通流预测的研究热点。总结了传统交通流预测方法和深度学习交通流预测方法的研究现状,详细介绍了深度学习架构卷积神经网络、自编码器、循环神经网络、图卷积神经网络、注意力机制与Transformer以及深度学习混合神经网络,并且对深度学习的交通流预测文献、深度学习的超参数和场景进行了总结分析。总结了现有文献中常用的国内外公共数据集。根据前人的模型实验对交通预测模型的性能进行了对比分析。最后,讨论了基于深度学习的交通预测领域的未来研究方向。

关键词: 交通流预测, 深度学习, 短时交通流, 交通数据集, 时空特征

Abstract: Traffic flow prediction is an important part of intelligent transportation system, which aims to accurately estimate the traffic flow of a specific area in a specific time interval in the future. With the increase of vehicles and the complex space-time relationship between different regions in the road network, traditional traffic prediction methods are difficult to accurately describe the characteristics of traffic data, while deep learning prediction methods can better deal with complex feature structures. Therefore, deep learning has become a research hotspot in short-term traffic flow prediction. Firstly, the research status of traditional traffic flow prediction methods and deep learning traffic flow prediction methods is summarized, and the deep learning architecture of convolutional neural network, autoencoder, recurrent neural network, graph convolutional neural network, attention mechanism and Transformer as well as deep learning hybrid neural network is introduced in detail. And the deep learning traffic flow prediction literature, deep learning hyperparameters and scenarios are summarized and analyzed. Secondly, the paper summarizes the common domestic and foreign public data sets in the existing literature. Then, the performance of traffic prediction models is compared and analyzed according to previous model experiments. Finally, the future research direction of traffic prediction based on deep learning is discussed.

Key words: traffic flow prediction, deep learning, short time traffic flow, traffic data set, spatio-temporal characteristics