
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 67-82.DOI: 10.3778/j.issn.1002-8331.2407-0410
熊章友,李卫军,朱晓娟,杨国梁,马馨瑜
出版日期:2025-06-01
发布日期:2025-05-30
XIONG Zhangyou, LI Weijun, ZHU Xiaojuan, YANG Guoliang, MA Xinyu
Online:2025-06-01
Published:2025-05-30
摘要: 交通流预测是智能交通系统的重要组成部分,旨在准确估计未来特定时间间隔内特定区域的交通流量。随着车辆的增长和路网中不同区域之间的复杂时空关系,传统的交通预测方法难以准确描述交通数据的特征,而深度学习的预测方法能够更好地处理复杂的特征结构,因此,深度学习的方法已成为短时交通流预测的研究热点。总结了传统交通流预测方法和深度学习交通流预测方法的研究现状,详细介绍了深度学习架构卷积神经网络、自编码器、循环神经网络、图卷积神经网络、注意力机制与Transformer以及深度学习混合神经网络,并且对深度学习的交通流预测文献、深度学习的超参数和场景进行了总结分析。总结了现有文献中常用的国内外公共数据集。根据前人的模型实验对交通预测模型的性能进行了对比分析。最后,讨论了基于深度学习的交通预测领域的未来研究方向。
熊章友, 李卫军, 朱晓娟, 杨国梁, 马馨瑜. 基于深度学习的短时交通流预测研究综述[J]. 计算机工程与应用, 2025, 61(11): 67-82.
XIONG Zhangyou, LI Weijun, ZHU Xiaojuan, YANG Guoliang, MA Xinyu. Short-Term Traffic Flow Prediction Based on Deep Learning[J]. Computer Engineering and Applications, 2025, 61(11): 67-82.
| [1] KARAMI Z, KASHEF R. Smart transportation planning: data, models, and algorithms[J]. Transportation Engineering, 2020, 2: 100013. [2] QI Y, ISHAK S. A hidden Markov model for short term prediction of traffic conditions on freeways[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 95-111. [3] SUN Y X, LENG B, GUAN W. A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system[J]. Neurocomputing, 2015, 166: 109-121. [4] DAVIS G A, NIHAN N L. Nonparametric regression and short-term freeway traffic forecasting[J]. Journal of Transportation Engineering, 1991, 117(2): 178-188. [5] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computer, 2006, 18(7): 1527-1554. [6] BOUKERCHE A, WANG J. Machine learning-based traffic prediction models for intelligent transportation systems[J]. Computer Networks, 2020, 181: 107530. [7] TEDJOPURNOMO D A, BAO Z F, ZHENG B H, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(4): 1544-1561. [8] JIANG W W, LUO J Y. Graph neural network for traffic forecasting: a survey[J]. Expert Systems with Applications, 2022, 207: 117921. [9] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11. [10] CHOROWSKI J, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[J]. arXiv:1506.07503, 2015. [11] 刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3): 82-85. LIU J, GUAN W. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3): 82-85. [12] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672. [13] KUMAR S V. Traffic flow prediction using Kalman filtering technique[J]. Procedia Engineering, 2017, 187: 582-587. [14] DONG H H, JIA L M, SUN X L, et al. Road traffic flow prediction with a time-oriented ARIMA model[C]//Proceedings of the 5th International Joint Conference on INC, IMS and IDC, 2009: 1649-1652. [15] 傅贵, 韩国强, 逯峰, 等. 基于支持向量机回归的短时交通流预测模型[J]. 华南理工大学学报(自然科学版), 2013, 41(9): 71-76. FU G, HAN G Q, LU F, et al. Short-term traffic flow forecasting model based on support vector machine regression[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(9): 71-76. [16] SUN T T, HUANG Z F, ZHU H D, et al. Congestion pattern prediction for a busy traffic zone based on the hidden Markov model[J]. IEEE Access, 2021, 9: 2390-2400. [17] CAI P L, WANG Y P, LU G Q, et al. A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 21-34. [18] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1393-1402. [19] TU Y, LIN S K, QIAO J Z, et al. Deep traffic congestion prediction model based on road segment grouping[J]. Applied Intelligence, 2021, 51(11): 8519-8541. [20] ZHENG H F, LIN F, FENG X X, et al. A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 6910-6920. [21] CHEN K, CHEN F, LAI B S, et al. Dynamic spatio-temporal graph-based CNNs for traffic flow prediction[J]. IEEE Access, 2020, 8: 185136-185145. [22] YANG D, LI S J, PENG Z, et al. MF-CNN: traffic flow prediction using convolutional neural network and multi-features fusion[J]. IEICE Transactions on Information and Systems, 2019, 102(8): 1526-1536. [23] BOGAERTS T, MASEGOSA A D, ANGARITA-ZAPATA J S, et al. A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2020, 112: 62-77. [24] ZANG D, LING J W, WEI Z H, et al. Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3700-3709. [25] PALM R B. Prediction as a candidate for learning deep hierarchical models of data[D]. Lyngby: Technical University of Denmark, 2012. [26] DUAN Y J, LYU Y S, WANG F Y. Performance evaluation of the deep learning approach for traffic flow prediction at different times[C]//Proceedings of the IEEE International Conference on Service Operations and Logistics, and Informatics, 2016: 223-227. [27] YANG H F, DILLON T S, CHEN Y P. Optimized structure of the traffic flow forecasting model with a deep learning approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2371-2381. [28] ESSIEN A, PETROUNIAS I, SAMPAIO P, et al. A deep-learning model for urban traffic flow prediction with traffic events mined from twitter[J]. World Wide Web, 2021, 24(4): 1345-1368. [29] TIAN Y, WEI C C, XU D W. Traffic flow prediction based on stack AutoEncoder and long short-term memory network[C]//Proceedings of the IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering, 2020: 385-388. [30] KASHYAP A A, RAVIRAJ S, DEVARAKONDA A, et al. Traffic flow prediction models-a review of deep learning techniques[J]. Cogent Engineering, 2022, 9(1): 2010510. [31] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [32] YANG B L, SUN S L, LI J Y, et al. Traffic flow prediction using LSTM with feature enhancement[J]. Neurocomputing, 2019, 332: 320-327. [33] ZHAO Z, CHEN W H, WU X M, et al. LSTM network: a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75. [34] MA X, YU H, WANG Y, et al. Large-scale transportation network congestion evolution prediction using deep learning theory[J]. PLoS One, 2015, 10(3): 0119044. [35] LYU Z, XU J, ZHENG K, et al. LC-RNN: a deep learning model for traffic speed prediction[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 3470-3476. [36] LIAO B B, ZHANG J Q, WU C, et al. Deep sequence learning with auxiliary information for traffic prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018: 537-546. [37] ZHANG Z C, LI M, LIN X, et al. Multistep speed prediction on traffic networks: a graph convolutional sequence-to-sequence learning approach with attention mechanism[J]. arXiv:1810.10237, 2018. [38] YE J C, SUN L L, DU B W, et al. Co-prediction of multiple transportation demands based on deep spatio-temporal neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 305-313. [39] CHUNG J, GULCEHRE C, CHO K, et al. Gated feedback recurrent neural networks[C]//Proceedings of the 32nd International Conference on Machine Learning, 2015: 2067-2075. [40] SUN P, BOUKERCHE A, TAO Y J. SSGRU: a novel hybrid stacked GRU-based traffic volume prediction approach in a road network[J]. Computer Communications, 2020, 160: 502-511. [41] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [42] BAI J D, ZHU J W, SONG Y J, et al. A3T-GCN: attention temporal graph convolutional network for traffic forecasting[J]. ISPRS International Journal of Geo-Information, 2021, 10(7): 485. [43] ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. [44] ALI A, ZHU Y M, ZAKARYA M. Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction[J]. Neural Networks, 2022, 145: 233-247. [45] LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[J]. arXiv:1707.01926, 2017. [46] JIANG R H, WANG Z N, YONG J W, et al. Spatio-temporal meta-graph learning for traffic forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 8078-8086. [47] WANG Y, ZHENG J, DU Y Q, et al. Traffic-GGNN: predicting traffic flow via attentional spatial-temporal gated graph neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18423-18432. [48] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014. [49] LIU D, TANG L, SHEN G, et al. Traffic speed prediction: an attention-based method[J]. Sensors (Basel), 2019, 19(18): 3836. [50] ZHENG C P, FAN X L, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 1234-1241. [51] ZHANG L, WU J Q, SHEN J, et al. SATP-GAN: self-attention based generative adversarial network for traffic flow prediction[J]. Transportmetrica B: Transport Dynamics, 2021, 9(1): 552-568. [52] ASHISH V. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010. [53] CAI L, JANOWICZ K, MAI G C, et al. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting[J]. Transactions in GIS, 2020, 24(3): 736-755. [54] CHEN C, LIU Y, CHEN L, et al. Bidirectional spatial-temporal adaptive transformer for urban traffic flow forecasting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 6913-6925. [55] HUO G Y, ZHANG Y, WANG B Y, et al. Hierarchical spatio-temporal graph convolutional networks and transformer network for traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 3855-3867. [56] XU M X, DAI W R, LIU C M, et al. Spatial-temporal transformer networks for traffic flow forecasting[J]. arXiv:2001. 02908, 2020. [57] MA J, ZHAO J, HOU Y. Spatial-temporal transformer networks for traffic flow forecasting using a pre-trained language model[J]. Sensors (Basel), 2024, 24(17): 5502. [58] LIU Y P, ZHENG H F, FENG X X, et al. Short-term traffic flow prediction with Conv-LSTM[C]//Proceedings of the 9th International Conference on Wireless Communications and Signal Processing, 2017: 1-6. [59] RANJAN N, BHANDARI S, ZHAO H P, et al. City-wide traffic congestion prediction based on CNN, LSTM and transpose CNN[J]. IEEE Access, 2020, 8: 81606-81620. [60] ZHENG H L, LI X, LI Y F, et al. GCN-GAN: integrating graph convolutional network and generative adversarial network for traffic flow prediction[J]. IEEE Access, 2022, 10: 94051-94062. [61] YIN L S, LIU P, WU Y Y, et al. ST-VGBiGRU: a hybrid model for traffic flow prediction with spatio-temporal multimodality[J]. IEEE Access, 2023, 11: 54968-54985. [62] DU S D, LI T R, GONG X, et al. A hybrid method for traffic flow forecasting using multimodal deep learning[J]. International Journal of Computational Intelligence Systems, 2020, 13(1): 85-97. [63] HOFFER E, HUBARA I, SOUDRY D. Train longer, generalize better: closing the generalization gap in large batch training of neural networks[J]. arXiv:1705.08741, 2017. [64] CHEN L, BEI L L, AN Y, et al. A hyperparameters automatic optimization method of time graph convolution network model for traffic prediction[J]. Wireless Networks, 2021, 27(7): 4411-4419. [65] TSAI C W, FANG Z Y. An effective hyperparameter optimization algorithm for DNN to predict passengers at a metro station[J]. ACM Transactions on Internet Technology, 2021, 21(2): 1-24. [66] QI X D, YAO J F, WANG P, et al. Combining weather factors to predict traffic flow: a spatial-temporal fusion graph convolutional network-based deep learning approach[J]. IET Intelligent Transport Systems, 2024, 18(3): 528-539. [67] XIA T, LIN J J, LI Y, et al. 3DGCN: 3-dimensional dynamic graph convolutional network for citywide crowd flow prediction[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(6): 1-21. [68] BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 17804-17815. [69] KONG W Y, GUO Z Y, LIU Y B. Spatio-temporal pivotal graph neural networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 8627-8635. [70] JI J H, WANG J Y, HUANG C, et al. Spatio-temporal self-supervised learning for traffic flow prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 4356-4364. [71] ZHANG J B, ZHENG Y, QI D K, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018, 259: 147-166. [72] LAN S, MA Y, HUANG W, et al. DSTAGNN: dynamic spatial-temporal aware graph neural network for traffic flow forecasting[C]//Proceedings of the International Conference on Machine Learning, 2022: 11906-11917. [73] GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 922-929. [74] SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 914-921. [75] SUTSKEVER I. Sequence to sequence learning with neural networks[J]. arXiv:1409.3215, 2014. [76] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[J]. arXiv:1709.04875, 2017. [77] ZHANG Q, CHANG W, YIN C, et al. Attention-based spatial-temporal convolution gated recurrent unit for traffic flow forecasting[J]. Entropy (Basel), 2023, 25(6): 938. [78] WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[J]. arXiv:1906.00121, 2019. [79] YAO H X, LIU Y D, WEI Y, et al. Learning from multiple cities: a meta-learning approach for spatial-temporal prediction[C]//Proceedings of the World Wide Web Conference, 2019: 2181-2191. [80] WEI Y, ZHENG Y, YANG Q. Transfer knowledge between cities[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 1905-1914. [81] CHEN L, SHAO W, LYU M Q, et al. AARGNN: an attentive attributed recurrent graph neural network for traffic flow prediction considering multiple dynamic factors[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17201-17211. [82] WU Q, HE K W, CHEN X, et al. Deep transfer learning across cities for mobile traffic prediction[J]. ACM Transactions on Networking, 2022, 30(3): 1255-1267. [83] TAN J Y, QIU Q Q, GUO W W, et al. Research on the construction of a knowledge graph and knowledge reasoning model in the field of urban traffic[J]. Sustainability, 2021, 13(6): 3191. [84] WANG S, LYU Y M, PENG Y, et al. Metro traffic flow prediction via knowledge graph and spatiotemporal graph neural network[J]. Journal of Advanced Transportation, 2022, 2022: 2348375. [85] MANIBARDO E L, LANA I, LOBO J L, et al. New perspectives on the use of online learning for congestion level prediction over traffic data[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, 2020: 1-8. [86] PENG H, DU B W, LIU M S, et al. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning[J]. Information Sciences, 2021, 578: 401-416. [87] QU L C, LI W, LI W J, et al. Daily long-term traffic flow forecasting based on a deep neural network[J]. Expert Systems with Applications, 2019, 121: 304-312. |
| [1] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [2] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [3] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [4] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [5] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [6] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [7] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [8] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [9] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [10] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [11] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [12] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [13] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [14] | 王文举, 唐邦, 顾泽骅, 王森. 深度学习的多视角三维重建技术综述[J]. 计算机工程与应用, 2025, 61(6): 22-35. |
| [15] | 孙宇, 刘川, 周扬. 深度学习在知识图谱构建及推理中的应用[J]. 计算机工程与应用, 2025, 61(6): 36-52. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||