[1] YU P, YAN X. Stock price prediction based on deep neural networks[J]. Neural Computing and Applications, 2020, 32: 1609-1628.
[2] 丛敬奇, 成鹏飞, 赵振军. 基于CEEMD-CNN-LSTM的股票指数集成预测模型[J]. 系统工程, 2023, 41(4): 104-116.
CONG J Q, CHENG P F, ZHAO Z J. The integrated forecasting model of stock index based on CEEMD-CNN-LSTM[J]. Systems Engineering, 2023, 41(4): 104-116.
[3] 张亚飞, 王晶, 赵耀帅, 等. 融合市场动态层次宏观信息的股票趋势预测[J]. 计算机应用, 2023, 43(5): 1378-1384.
ZHANG Y F, WANG J, ZHAO Y S, et al. Stock movement prediction with market dynamic hierarchical macro information[J]. Journal of Computer Applications, 2023, 43(5): 1378-1384.
[4] CHEN S, ZHOU C. Stock prediction based on genetic algorithm feature selection and long short-term memory neural network[J]. IEEE Access, 2021, 9: 9066-9072.
[5] 赵帅斌, 林旭东, 翁晓健. 基于经验模态分解与投资者情绪的Attention-BiLSTM股价趋势预测模型[J]. 计算机应用, 2023, 43(1): 112-118.
ZHAO S B, LIN X D, WENG X J. Attention-BiLSTM stock price trend prediction model based on empirical mode decomposition and investor sentiment[J]. Journal of Computer Applications, 2023, 43(1): 112-118.
[6] 熊景华, 茹璟. 基于随机森林算法和模糊信息粒化的汇率预测组合模型研究[J]. 数量经济技术经济研究, 2021, 38(1): 135-156.
XIONG J H, RU J. Research on exchange rate forecasting integrated model based on random forest and fuzzy information granulation[J]. Journal of Quantitative & Technological Economics, 2021, 38(1): 135-156.
[7] 邓德军, 徐洪珍, 韦诗玥. E-V-ALSTM模型的股价预测[J]. 计算机工程与应用, 2023, 59(6): 101-112.
DENG D J, XU H Z, WEI S Y. Stock price prediction based on E-V-ALSTM model[J]. Computer Engineering and Applications, 2023, 59(6): 101-112.
[8] 任佳屹, 王爱银. 融合因果注意力Transformer模型的股价预测研究[J]. 计算机工程与应用, 2023, 59(13): 325-334.
REN J Y, WANG A Y. Causal attention transformer model for stock price prediction[J]. Computer Engineering and Applications, 2023, 59(13): 325-334.
[9] 于孝建, 刘国鹏, 刘建林, 等. 基于LSTM网络和文本情感分析的股票指数预测[J]. 中国管理科学, 2024, 32(8): 25-35.
YU X J, LIU G P, LIU J L, et al. Stock index prediction based on LSTM network and text sentiment analysis[J]. Chinese Journal of Management Science, 2024, 32(8): 25-35.
[10] 李斌, 邵新月, 李玥阳. 机器学习驱动的基本面量化投资研究[J]. 中国工业经济, 2019(8): 61-79.
LI B, SHAO X Y, LI Y Y. Research on machine learning driven quantamental investing[J]. China Industrial Economics, 2019(8): 61-79.
[11] NELSON D M Q, PEREIRA A C M, DE OLIVEIRA R A. Stock market’s price movement prediction with LSTM neural networks[C]//Proceedings of the International Joint Conference on Neural Networks, 2017: 1419-1426.
[12] 刘伟龙, 张永, 杨兴雨. 基于LSTM预测信息的在线融资融券组合交易策略[J]. 系统工程理论与实践, 2024, 44(8): 2493-2508.
LIU W L, ZHANG Y, YANG X Y. Online margin trading strategy based on LSTM prediction information[J]. Systems Engineering — Theory & Practice, 2024, 44(8): 2493-2508.
[13] GUO J, TUCKFIELD B. News-based machine learning and deep learning methods for stock prediction[J]. Journal of Physics Conference Series, 2020, 1642: 012014.
[14] 许雪晨, 田侃. 一种基于金融文本情感分析的股票指数预测新方法[J]. 数量经济技术经济研究, 2021, 38(12): 124-145.
XU X C, TIAN K. A Novel financial text sentiment analysis-based approach for stock index prediction[J]. Journal of Quantitative & Technological Economics, 2021, 38(12): 124-145.
[15] 王晴. 组合模型在股票价格预测中应用研究[J]. 计算机仿真, 2010, 27(12): 361-364.
Research on stock price prediction based on combined model[J]. Computer Simulation, 2010, 27(12): 361-364.
[16] KIM T, KIM H Y. Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data[J]. PLOS One, 2019: 0212320.
[17] QIU J, WANG B, ZHOU C. Forecasting stock prices with long-short term memory neural network based on attention mechanism[J]. PLOS One, 2020: 0227222.
[18] CHEN Q, ZHANG W, LOU Y. Forecasting stock prices using a hybrid deep learning model integrating attention mechanism, multi-layer perceptron, and bidirectional long-short term memory neural network[J]. IEEE Access, 2020, 8: 117365-117376.
[19] 陈兆宇, 荆丰伟, 李杰, 等. 基于改进降噪自编码器半监督学习模型的热轧带钢水梁印识别算法[J]. 工程科学学报, 2022, 44(8): 1338-1348.
CHEN Z Y, JING F W, LI J, et al. Recognition algorithm of hot-rolled strip steel water beam mark based on a semi-supervised learning model of an improved denoising autoencoder[J]. Chinese Journal of Engineering, 2022, 44(8): 1338-1348.
[20] 于锦, 谭飞, 仝德富, 等. 基于栈式自编码器的土质边坡失稳风险评估[J]. 安全与环境工程, 2020, 27(5): 153-158.
YU J, TAN F, TONG D F, et al. Instability risk assessment of soil slope based on stacked autoencoder[J]. Safety and Environmental Engineering, 2020, 27(5): 153-158.
[21] MA W, YU H, ZHAO K, et al. Tibetan location name recognition based on BiLSTM-CRF model[C]//Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, 2019.
[22] 袁婧, 潘甦, 谢浩, 等. 融合投资者情绪的S_AM_BiLSTM股价预测模型[J]. 计算机工程与应用, 2024, 60(7): 274-281.
YUAN J, PAN S, XIE H, et al. Stock price prediction integrating investor sentiment based on S_AM_BiLSTM model[J]. Computer Engineering and Applications, 2024, 60(7): 274-281.
[23] GUO Q, QIU X, XUE X, et al. Low-rank and locality constrained self-attention for sequence modeling[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(12): 2213-2222.
[24] 王静, 何苗苗, 丁建立, 等. 面向多维时间序列异常检测的时空图卷积网络[J]. 西安电子科技大学学报 (自然科学版), 2024, 51(3): 170-181.
WANG J, HE M M, DING J L, et al. Spatial-temporal graph convolutional networks for anomaly detection in multivariate time series[J]. Journal of Xidian University(Natural Science), 2024, 51(3): 170-181.
[25] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv:1803.01271, 2018.
[26] 李浩阳, 贺小伟, 王宾, 等. 基于改进Informer的云计算资源负载预测研究[J]. 计算机工程, 2024, 50(2): 43-50.
LI H Y, HE X W, WANG B, et al. Cloud computing resource load prediction based on improved informer[J]. Computer Engineering, 2024, 50(2): 43-50.
[27] 荆志宇, 李培强, 林文婷. 结合贝叶斯优化及通道注意力的双端优化时序式风功率预测模型[J]. 电力系统及其自动化学报, 2024, 36(8): 39-47.
JING Z Y, LI P Q, LIN W T. A Double-side optimized time-series wind power prediction model combining Bayesian optimization and channel attention[J]. Proceedings of the CSU-EPSA, 2024, 36(8): 39-47.
[28] WU Z, PAN S, LONG G, et al. Connecting the dots: multivariate time series forecasting with graph neural networks[J]. arXiv:2005.11650, 2020.
[29] 林昱, 常晋源, 黄雁勇. 融合经验模态分解与深度时序模型的股价预测[J]. 系统工程理论与实践, 2022, 42(6): 1663-1677.
LIN Y, CHANG J Y, HUANG Y Y. On the prediction of the stock price based on empirical mode decomposition and deep time series model[J]. Systems Engineering-Theory & Practice, 2022, 42(6): 1663-1677.
[30] 郭娜, 陈东晖, 刘彦迪, 等. 尾部溢出视角下国际油价对中国新能源股价的影响研究[J]. 统计与信息论坛, 2023, 38(8): 89-100.
GUO N, CHEN D H, LIU Y D, et al. Research on the impact of international oil prices on China’s new energy stock price from the perspective of tail spillovers[J]. Journal of Statistics and Information, 2023, 38(8): 89-100.
[31] QI C. Stock price prediction of Chinese company using support vector machine[J]. BCP Business & Management, 2023, 38: 2896-2900.
[32] HU Y, SHAO L, LA L, et al. Using investor and news sentiment in tourism stock price prediction based on XGBoost model[C]//Proceedings of the IEEE/ACIS 6th International Conference on Big Data, Cloud Computing, and Data Science, 2021: 20-24.
[33] KIM G H, KIM S H. Variable selection for artificial neural networks with applications for stock price prediction[J]. Applied Artificial Intelligence, 2019, 33(1): 54-67.
[34] LI Q, TAN J, WANG J, et al. A multimodal event-driven LSTM model for stock prediction using online news[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(10): 3323-3337.
[35] TENG X, ZHANG X, LUO Z. Multi-scale local cues and hierarchical attention-based LSTM for stock price trend prediction[J]. Neurocomputing, 2022, 505: 92-100.
[36] KIM M, OH Y, KIM W. Sentence similarity prediction based on siamese CNN-bidirectional LSTM with self-attention[J]. Journal of KIISE, 2019, 46(3): 241-245.
[37] 景楠, 史紫荆, 舒毓民. 基于注意力机制和CNN-LSTM模型的沪铜期货高频价格预测[J/OL]. 中国管理科学: 1-13[2024-07-07]. https://doi.org/10.16381/j.cnki.issn1003-207x. 2020.0342.
JING N, SHI Z J, SHU Y M. Forecasting high frequency price of Shanghai copper futures based on attention mechanism and CNN-LSTM[J/OL]. Chinese Journal of Management Science, 1-13[2024-07-07]. https://doi.org/10.16381/j.cnki.issn1003-207x.2020.0342.
[38] WANG J, CUI Q, SUN X, et al. Asian stock markets closing index forecast based on secondary decomposition, multi-factor analysis and attention-based LSTM model[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104908. |