
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (8): 17-34.DOI: 10.3778/j.issn.1002-8331.2407-0158
刘海超,柳林,王海龙,赵巍伟,刘静
出版日期:2025-04-15
发布日期:2025-04-15
LIU Haichao, LIU Lin, WANG Hailong, ZHAO Weiwei, LIU Jing
Online:2025-04-15
Published:2025-04-15
摘要: 知识图谱中普遍存在实体和关系缺失等不足,知识图谱补全能够有效解决上述不足被研究者广泛关注。知识图谱嵌入方法的链接预测作为知识补全的重要研究方向,能够预测出知识图谱中缺失的实体或关系,来补全知识图谱并增强其完整性。阐述了知识图谱链接预测的研究背景、意义和定义;以嵌入单位的实体个数为分类标准,将知识图谱嵌入的链接预测模型划分为双实体嵌入链接预测模型和多实体嵌入链接预测模型,详细阐述模型构建思路,分析实验结果并总结各类模型优缺点。最后,展望知识图谱嵌入链接预测现状以及未来研究方向,为后续的发展提供启示和指导。
刘海超, 柳林, 王海龙, 赵巍伟, 刘静. 知识图谱嵌入方法的链接预测研究综述[J]. 计算机工程与应用, 2025, 61(8): 17-34.
LIU Haichao, LIU Lin, WANG Hailong, ZHAO Weiwei, LIU Jing. Survey of Link Prediction in Knowledge Graph Embedding Methods[J]. Computer Engineering and Applications, 2025, 61(8): 17-34.
| [1] SINGHAL A. Introducing the knowledge graph: things, not strings[EB/OL]. (2012-05-16)[2024-06-15]. https://www.blog. google/products/search/introducing-knowledge-graph-things-not/. [2] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250. [3] VRANDE?I? D, KR?TZSCH M. Wikidata[J]. Communications of the ACM, 2014, 57(10): 78-85. [4] CARLSON A, BETTERIDGE J, KISIEL B, et al. Toward an architecture for never?ending language learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2010: 1306-1313. [5] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 697-706. [6] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data[M]//The semantic Web. Berlin, Heidelberg: Springer, 2007: 722-735. [7] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 601-610. [8] WEST R, GABRILOVICH E, MURPHY K, et al. Knowledge base completion via search-based question answering[C]//Proceedings of the 23rd International Conference on World Wide Web. New York: ACM, 2014: 515-526. [9] YOUN J, TAGKOPOULOS I. KGLM: integrating knowledge graph structure in language models for link prediction[J]. arXiv:2211.02744, 2022. [10] SHEN T, ZHANG F, CHENG J W. A comprehensive overview of knowledge graph completion[J]. Knowledge-Based Systems, 2022, 255: 109597. [11] 杨大伟, 周刚, 卢记仓, 等. 基于知识表示学习的知识图谱补全研究综述[J]. 信息工程大学学报, 2021, 22(5): 558-565. YANG D W, ZHOU G, LU J C, et al. Review of knowledge graph completion based on knowledge representation learning[J]. Journal of Information Engineering University, 2021, 22(5): 558-565. [12] 徐有为, 张宏军, 程恺, 等. 知识图谱嵌入研究综述[J]. 计算机工程与应用, 2022, 58(9): 30-50. XU Y W, ZHANG H J, CHENG K, et al. Comprehensive survey on knowledge graph embedding[J]. Computer Engineering and Applications, 2022, 58(9): 30-50. [13] 杜雪盈, 刘名威, 沈立炜, 等. 面向链接预测的知识图谱表示学习方法综述[J]. 软件学报, 2024, 35(1): 87-117. DU X Y, LIU M W, SHEN L W, et al. Survey on representation learning methods of knowledge graph for link prediction[J]. Journal of Software, 2024, 35(1): 87-117. [14] 梁新雨, 司冠南, 李建辛, 等. 面向知识图谱补全的归纳学习研究综述[J]. 计算机科学与探索, 2023, 17(11): 2580-2604. LIANG X Y, SI G N, LI J X, et al. Survey on inductive learning for knowledge graph completion[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2580-2604. [15] 张天成, 田雪, 孙相会, 等. 知识图谱嵌入技术研究综述[J]. 软件学报, 2023, 34(1): 277-311. ZHANG T C, TIAN X, SUN X H, et al. Overview on knowledge graph embedding technology research[J]. Journal of Software, 2023, 34(1): 277-311. [16] ROSSI A, BARBOSA D, FIRMANI D, et al. Knowledge graph embedding for link prediction[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(2): 1-49. [17] 韩亚楠, 刘建伟, 罗雄麟. 概率主题模型综述[J]. 计算机学报, 2021, 44(6): 1095-1139. HAN Y N, LIU J W, LUO X L. A survey on probabilistic topic model[J]. Chinese Journal of Computers, 2021, 44(6): 1095-1139. [18]YI Z. InterTris: specific domain knowledge graph representation learning by interaction among triple elements[J]. Chinese Journal of Computers, 2021, 44(8): 1535-1548. [19] JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514. [20] BORDES A, GLOROT X, WESTON J, et al. Joint learning of words and meaning representations for open-text semantic parsing[J]. Journal of Machine Learning Research, 2012, 22: 127-135. [21] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems, 2013:?2787-2795. [22] MIKOLOV T, SUTSKER I, CHEN K, et al. Distributed representations of words and phrases and their composition-ality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013: 3111-3119. [23] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014. [24] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015: 2181-2187. [25] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 687-696. [26] EBISU T, ICHISE R. TorusE: knowledge graph embedding on a lie group[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 1819-1826. [27] SUN Z Q, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[J]. arXiv:1902.10197, 2019. [28] JI G L, LIU K, HE S Z, et al. Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016:?985-991. [29] LV X, HOU L, LI J Z, et al. Differentiating concepts and instances for knowledge graph embedding[J]. arXiv:1811. 04588, 2018. [30] FENG J, HUANG M, WANG M, et al. Knowledge graph embedding by flexible translation[C]//Proceedings of the 15th International Conference on the Principles of Knowledge Representation and Reasoning, 2016:557-560. [31] FAN M, ZHOU Q, CHANG E, et al. Transition-based knowledge graph embedding with relational mapping properties[C]//Proceedings of the 28th Pacific Asia Conference on language, information and Computation, 2014: 328-337. [32] XIAO H, HUANG M L, HAO Y, et al. TransA: an adaptive approach for knowledge graph embedding[J]. arXiv:1509. 05490, 2015. [33] WANG X Z, GAO T Y, ZHU Z C, et al. KEPLER: a unified model for knowledge embedding and pre-trained language representation[J]. Transactions of the Association for Computational Linguistics, 2021, 9: 176-194. [34] NICKEL M, TRESP V, KRIEGEL H P. Factorizing YAGO: scalable machine learning for linked data[C]//Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012: 271-280. [35] YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014. [36] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33nd International Conference on Machine Learning, 2016: 2071-2080. [37] LIU H, WU Y, YANG Y. Analogical inference for multi-relational embeddings[C]//Proceedings of the International Conference on Machine Learning, 2017: 2168-2178. [38] KAZEMI S M, POOLE D. SimplE embedding for link prediction in knowledge graphs[C]//Advances in Neural Information Processing Systems, 2018:?4289-4300. [39] NAYYERI M, WANG Z H, AKTER M M, et al. Integrating knowledge graph embeddings andpre-trained language models in hyper complex spaces[C]//Proceedings of the International Semantic Web Conference. Cham: Springer Nature Switzerland, 2023: 388-407. [40] SOCHER R, CHEN D, MANNING C, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Advances in Neural Information Processing Systems, 2013: 926-934. [41] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [42] ELMAN J. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211. [43] MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention[C]//Advances in Neural Information Processing Systems, 2014:?2204-2212. [44] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 1811-1818. [45] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[J]. arXiv:1712. 02121, 2017. [46] JIANG X T, WANG Q, WANG B. Adaptive convolution for multi-relational learning[C]//Proceedings of the 2019 Conference of the North. Stroudsburg: ACL, 2019: 978-987. [47] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3009-3016. [48] CHE F H, ZHANG D W, TAO J H, et al. ParamE: regarding neural network parameters as relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 2774-2781. [49] NGUYEN D Q, VU T, NGUYEN T D, et al. A capsule network-based embedding model for knowledge graph completion and search personalization[J]. arXiv:1808.04122, 2018. [50] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems, 2017: 3856-3866. [51] LIN Y K, LIU Z Y, LUAN H B, et al. Modeling relation paths for representation learning of knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 705-714. [52] GUO L, SUN Z, HU W. Learning to exploit long-term relational dependencies in knowledge graphs[C]//Proceedings of the International Conference on Machine Learning, 2019: 2505-2514. [53] SHU D, CHEN T L, JIN M Y, et al. Knowledge graph large language model (KG-LLM) for link prediction[J]. arXiv:2403.07311, 2024. [54] 刘丹阳, 方全, 张晓伟, 等. 基于图对比注意力网络的知识图谱补全[J]. 北京航空航天大学学报, 2022, 48(8): 1428-1435. LIU D Y, FANG Q, ZHANG X W, et al. Knowledge graph completion based on graph contrastive attention network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1428-1435. [55] SALHA G, LIMNIOS S, HENNEQUIN R, et al. Gravity-inspired graph autoencoders for directed link prediction[J]. arXiv:1905.09570, 2019. [56] THOMAS N, MAX W. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the International Conference on Learning Representations, 2017. [57] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the Semantic Web. Cham: Springer International Publishing, 2018: 593-607. [58] SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 3060-3067. [59] CAI L, YAN B, MAI G C, et al. TransGCN: coupling transformation assumptions with graph convolutional networks for link prediction[C]//Proceedings of the 10th International Conference on Knowledge Capture. New York: ACM, 2019: 131-138. [60] YE R, LI X, FANG Y J, et al. A vectorized relational graph convolutional network for multi-relational network alignment[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019: 4135-4141. [61] SHIKHAR V, SOUMYA S, VIKRAM N, et al. Composition-based multi-relational graph convolutional networks[C]//Proceedings of the International Conference on Learning Representations, 2020. [62] TIAN A Q, ZHANG C H, RANG M, et al. RA-GCN: relational aggregation graph convolutional network for knowledge graph completion[C]//Proceedings of the 2020 12th International Conference on Machine Learning and Computing. New York: ACM, 2020: 580-586. [63] YU D H, YANG Y M, ZHANG R H, et al. Knowledge embedding based graph convolutional network[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 1619-1628. [64] HE H T, NIU H R, FENG J Z, et al. An embedding model for knowledge graph completion based on graph sub-hop convolutional network[J]. Big Data Research, 2022, 30: 100351. [65] LI X L, TIAN Y J, JI S W. Semantic- and relation-based graph neural network for knowledge graph completion[J]. Applied Intelligence, 2024, 54(8): 6085-6107. [66] LIU Z, ZHOU J. Introduction to graph neural network[M]//Synthesis lectures on artificial intelligence and machine learning. San Rafael, CA: Morgan & Claypool Publishers, 2020: 39-41. [67] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 4710-4723. [68] 陆以勤, 潘周双, 张洋, 等. 基于交互式连接图注意力网络的知识图谱补全方法[J]. 华南理工大学学报 (自然科学版), 2022, 50(12): 13-19. LU Y Q, PAN Z S, ZHANG Y, et al. Knowledge graph completion method based on interactively connected graph attention network[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(12): 13-19. [69] YIN H, ZHONG J, WANG C, et al. GS-InGAT: an interaction graph attention network with global semantic for knowledge graph completion[J]. Expert Systems with Applications, 2023, 228: 120380. [70] ZHANG Z, ZHUANG F Z, ZHU H S, et al. Relational graph neural network with hierarchical attention for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 9612-9619. [71] MA J T, LI D Y, ZHU H D, et al. GAFM: a knowledge graph completion method based on graph attention faded mechanism[J]. Information Processing & Management, 2022, 59(5): 103004. [72] WU J K, SHI W T, CAO X Z, et al. DisenKGAT: knowledge graph embedding with disentangled graph attention network[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 2140-2149. [73] MA J, CUI P, KUANG K, et al. Disentangled graph convolutional networks[C]//Proceedings of the International Conference on Machine Learning, 2019: 4212-4221. [74] LI Z F, ZHAO Y, ZHANG Y, et al. Multi-relational graph attention networks for knowledge graph completion[J]. Knowledge-Based Systems, 2022, 251: 109262. [75] DAI G Q, WANG X Z, ZOU X Y, et al. MRGAT: multi-Relational Graph Attention Network for knowledge graph completion[J]. Neural Networks, 2022, 154: 234-245. [76] LIANG S, ZHU A J, ZHANG J S, et al. Hyper-node relational graph attention network for multi-modal knowledge graph completion[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(2): 1-21. [77] XU H C, BAO J P, LIU W B. Double-branch multi-attention based graph neural network for knowledge graph completion[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 15257-15271. [78] YIN H, ZHONG J, LI R Z, et al. Disentangled relational graph neural network with contrastive learning for knowledge graph completion[J]. Knowledge-Based Systems, 2024, 295: 111828. [79] SHANG B, ZHAO Y L, LIU J, et al. Mixed geometry message and trainable convolutional attention network for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 8966-8974. [80] SUN T X, SHAO Y F, QIU X P, et al. CoLAKE: contextualized language and knowledge embedding[[J]. arXiv:2010. 00309, 2020. [81]GEORGE A, MILLER. WordNet: a lexical database for English[J]. Human Language Technology, 1995, 38(11): 39-41. [82] TOUTANOVA K, CHEN D Q. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Stroudsburg: ACL, 2015: 57-66. [83] 孙水发, 李小龙, 李伟生, 等. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52. SUN S F, LI X L, LI W S, et al. Review of graph neural networks applied to knowledge graph reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 27-52. [84] BAGHERSHAHI P, HOSSEINI R, MORADI H. Self-attention presents low-dimensional knowledge graph embeddings for link prediction[J]. Knowledge-Based Systems, 2023, 260: 110124. [85] XIE Q Z, MA X Z, DAI Z H, et al. An interpretable knowledge transfer model for knowledge base completion[J]. arXiv:1704.05908, 2017. [86] CHANDRAHAS, SHARMA A, TALUKDAR P. Towards understanding the geometry of knowledge graph embeddings[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 122-131. |
| [1] | 董磊, 吴福居, 史健勇, 潘龙飞. 基于大语言模型的施工安全多模态知识图谱的构建与应用[J]. 计算机工程与应用, 2025, 61(9): 325-333. |
| [2] | 周家啟, 宋燃, 余正涛, 黄于欣, 徐佳龙. 基于规则和嵌入联合学习的低资源知识图谱补全[J]. 计算机工程与应用, 2025, 61(9): 148-158. |
| [3] | 庞俊, 马志芬, 林晓丽, 王蒙湘. 结合GAT与卷积神经网络的知识超图链接预测[J]. 计算机工程与应用, 2025, 61(9): 194-201. |
| [4] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [5] | 任海玉, 刘建平, 王健, 顾勋勋, 陈曦, 张越, 赵昌顼. 基于大语言模型的智能问答系统研究综述[J]. 计算机工程与应用, 2025, 61(7): 1-24. |
| [6] | 贾莉, 马廷淮, 桑晨扬, 潘倩. 融合知识和语义信息的双编码器自动摘要模型[J]. 计算机工程与应用, 2025, 61(7): 213-221. |
| [7] | 田侃, 曹新汶, 张浩然, 先兴平, 吴涛, 宋秀丽. 结合图卷积模型和共享编码的知识图谱问答方法[J]. 计算机工程与应用, 2025, 61(7): 233-244. |
| [8] | 孙宇, 刘川, 周扬. 深度学习在知识图谱构建及推理中的应用[J]. 计算机工程与应用, 2025, 61(6): 36-52. |
| [9] | 李敏, 李学俊, 廖竞. 融合多层次卷积神经网络的知识图谱嵌入模型[J]. 计算机工程与应用, 2025, 61(6): 192-198. |
| [10] | 苑中旭, 李理, 何凡, 杨秀, 韩东轩. 融合思维链与知识图谱的中医问答模型[J]. 计算机工程与应用, 2025, 61(4): 158-166. |
| [11] | 张锴, 贾涛. 结合知识图谱和小目标改进的RCNN电力杆塔部件识别方法[J]. 计算机工程与应用, 2025, 61(4): 299-309. |
| [12] | 杭婷婷, 丁海超, 郭亚, 冯钧. 多元关系知识表示学习方法研究综述[J]. 计算机工程与应用, 2025, 61(3): 62-83. |
| [13] | 许智宏, 张天润, 王利琴, 董永峰. 融合图谱重构的时序知识图谱推理[J]. 计算机工程与应用, 2024, 60(9): 181-187. |
| [14] | 赵博, 王宇嘉, 倪骥. E-TUP:融合E-CP与TUP的联合知识图谱学习推荐方法[J]. 计算机工程与应用, 2024, 60(8): 99-109. |
| [15] | 江钰哲, 成全. 图嵌入式双层图卷积网络药物推荐模型[J]. 计算机工程与应用, 2024, 60(7): 315-324. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||