[1] 徐彦威, 李军, 董元方, 等. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18(9): 2221-2238.
XU Y W, LI J, DONG Y F, et al. Survey of development of YOLO object detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2221-2238.
[2] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[3] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] GE Z. YOLOx: exceeding YOLO series in 2021[J]. arXiv: 2107.08430, 2021.
[7] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[8] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[9] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10781-10790.
[10] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[11] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. arXiv:1506.01497, 2015.
[13] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[14] 白宇, 周艳媛, 安胜彪. 改进YOLOv5的无人机小目标检测方法研究[J]. 计算机工程与应用, 2024, 60(10): 276-284.
BAI Y, ZHOU Y Y, AN S B. Research on UAV small object detection method improved by YOLOv5[J]. Computer Engineering and Applications, 2024, 60(10): 276-284.
[15] 彭晏飞, 赵涛, 陈炎康, 等. 基于上下文信息与特征细化的无人机小目标检测算法[J]. 计算机工程与应用, 2024, 60(5): 183-190.
PENG Y F, ZHAO T, CHEN Y K, et al. UAV small object detection algorithm based on context information and feature refinement[J]. Computer Engineering and Applications, 2024, 60(5): 183-190.
[16] 王晓红, 胡豫. 复杂背景下的无人机图像小目标检测[J]. 计算机工程与应用, 2023, 59(15): 107-114.
WANG X H, HU Y. UAV image small object detection on complex background[J]. Computer Engineering and Applications, 2023, 59(15): 107-114.
[17] 赵鑫, 陈里里, 杨维川, 等. DY-YOLOv5: 基于多重注意力机制的航拍图像目标检测[J]. 计算机工程与应用, 2024, 60(7): 183-191.
ZHAO X, CHEN L L, YANG W C, et al. DY-YOLOv5: target detection for aerial image based on multiple attention[J]. Computer Engineering and Applications, 2024, 60(7): 183-191.
[18] 付锦燚, 张自嘉, 孙伟, 等. 改进YOLOv8的航拍图像小目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 100-109.
FU J Y, ZHANG Z J, SUN W, et al. Improved YOLOv8 small target detection algorithm in aerial images[J]. Computer Engineering and Applications, 2024, 60(6): 100-109.
[19] 吴明杰, 云利军, 陈载清, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024, 60(2): 191-199.
WU M J, YUN L J, CHEN Z Q, et al. Improved YOLOv5s small object detection algorithm in UAV view[J]. Computer Engineering and Applications, 2024, 60(2): 191-199.
[20] 陈佳慧, 王晓虹. 改进YOLOv5的无人机航拍图像密集小目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 100-108.
CHEN J H, WANG X H. Dense small object detection algorithm based on improved YOLOv5 in UAV aerial images[J]. Computer Engineering and Applications, 2024, 60(3): 100-108.
[21] 周晴, 谭功全, 尹宋麟, 等. 改进YOLOv5s的道路目标检测算法[J]. 液晶与显示, 2023, 38(5): 680-690.
ZHOU Q, TAN G Q, YIN S L, et al. Road object detection algorithm based on improved YOLOv5s[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(5): 680-690.
[22] LI Y Y, YANG Y J, AN Y Y, et al. LARS: remote sensing small object detection network based on adaptive channel attention and large kernel adaptation[J]. Remote Sensing, 2024, 16(16): 2906.
[23] LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]//Proceedings of the European Conference on Computer Vision, 2018: 385-400.
[24] ZHANG X, LIU C, YANG D G, et al. RFAConv: innovating spatial attention and standard convolutional operation[J]. arXiv:2304.03198, 2023.
[25] WU T Y, TANG S, ZHANG R, et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2020, 30: 1169-1179.
[26] CUI Y N, REN W Q, KNOLL A, et al. Omni-kernel network for image restoration[C]//Proceedings of the 38th AAAI Conference on Artificial Intelligence and 36th Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence. New York: ACM, 2024: 1426-1434.
[27] DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7369-7378.
[28] CAO Y R, HE Z J, WANG L J, et al. VisDrone-DET2021: the vision meets drone object detection challenge results[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops, 2021.
[29] WANG J W, YANG W, GUO H W, et al. Tiny object detection in aerial images[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 3791-3798.
[30] CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488. |