[1] 罗常伟, 王双双, 尹峻松, 等. 集成学习研究现状及展望[J]. 指挥与控制学报, 2023, 9(1): 1-8.
LUO C W, WANG S S, YIN J S, et al. Research status and prospect of ensemble learning[J]. Journal of Command and Control, 2023, 9(1): 1-8.
[2] DU G S, LIU Z X, LU H F. Application of innovative risk early warning mode under big data technology in Internet credit financial risk assessment[J]. Journal of Computational and Applied Mathematics, 2021, 386: 113260.
[3] YE Y G, SHI J S, ZHU D X, et al. Management of medical and health big data based on integrated learning-based health care system: a review and comparative analysis[J]. Computer Methods and Programs in Biomedicine, 2021, 209: 106293.
[4] ZHONG X R, DUAN S K, WANG L D. An effective and efficient broad-based ensemble learning model for moderate-large scale image recognition[J]. Artificial Intelligence Review, 2023, 56(5): 4197-4215.
[5] 白少进, 白静, 司庆龙, 等. 面向三维模型多样化分类的深度集成学习[J]. 计算机工程与应用, 2023, 59(5): 222-231.
BAI S J, BAI J, SI Q L, et al. Deep ensemble learning for diversified 3D model classification[J]. Computer Engineering and Applications, 2023, 59(5): 222-231.
[6] GU Q H, SUN W J, LI X X, et al. A new ensemble classification approach based on rotation forest and lightGBM[J]. Neural Computing and Applications, 2023, 35(15): 11287-11308.
[7] MCTAVISH H, ZHONG C D, ACHERMANN R, et al. Fast sparse decision tree optimization via reference ensembles[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 9604-9613.
[8] PHAM B T, PHONG T V, NGUYEN-THOI T, et al. Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers[J]. Geocarto International, 2022, 37(3): 735-757.
[9] 范劭博, 张中杰, 黄健. 决策树剪枝加强的关联规则分类方法[J]. 计算机工程与应用, 2023, 59(5): 87-94.
FAN S B, ZHANG Z J, HUANG J. Association rule classification method strengthened by decision tree pruning[J]. Computer Engineering and Applications, 2023, 59(5): 87-94.
[10] QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106.
[11] CHANMEE S, KESORN K. Semantic decision trees: a new learning system for the ID3-based algorithm using a knowledge base[J]. Advanced Engineering Informatics, 2023, 58: 102156.
[12] KLEMEL? J, KLINKE S, SOFYAN H. Classification and regression trees[J]. Springer Nature Link, 2000: 281-304.
[13] PURWANTI E, NOR R U N U, SOELISTYONO S. Web design for stroke early detection using decision tree C5.0[J]. Komputasi: Jurnal Ilmiah Ilmu Komputer Dan Matematika, 2023, 20(2): 135-147.
[14] KUSHIRO S, FUKUI S, INUI A, et al. Clinical prediction rule for bacterial arthritis: Chi-squared automatic interaction detector decision tree analysis model[J]. SAGE Open Medicine, 2023, 11(3): 1-10.
[15] ZAITSEVA E, RABCAN J, LEVASHENKO V, et al. Importance analysis of decision making factors based on fuzzy decision trees[J]. Applied Soft Computing, 2023, 134: 109988.
[16] HILLEBRAND E, LUKAS M, WEI W. Bagging weak predictors[J]. International Journal of Forecasting, 2021, 37(1): 237-254.
[17] GENUER R, POGGI J M, GENUER R, et al. Random forests[M]. Berlin: Springer International Publishing, 2020.
[18] CHAVENT M, GENUER R, SARACCO J. Combining clustering of variables and feature selection using random forests[J]. Communications in Statistics-Simulation and Computation, 2021, 50(2): 426-445.
[19] WAN Y, LIU D, REN J C. A modeling method of wide random forest multi-output soft sensor with attention mechanism for quality prediction of complex industrial processes[J]. Advanced Engineering Informatics, 2024, 59: 102255.
[20] LI Z, VAN LEEUWEN M. Explainable contextual anomaly detection using quantile regression forests[J]. Data Mining and Knowledge Discovery, 2023, 37(6): 2517-2563.
[21] XU H Z, PANG G S, WANG Y J, et al. Deep isolation forest for anomaly detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12591-12604.
[22] SIGRIST F. Gaussian process boosting[J]. The Journal of Machine Learning Research, 2022, 23(1): 10565-10610.
[23] SAHIN E K. Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping[J]. Geocarto International, 2022, 37(9): 2441-2465.
[24] CHEN S Q, JIANG W, CHEN J M, et al. Research on abnormal electrical behavior identification technology based on cost sensitive RAE-AdaBoost algorithm[C]//Proceedings of the 2023 IEEE 6th International Electrical and Energy Conference. Piscataway: IEEE, 2023: 2609-2614.
[25] MITSUBOSHI R, HATANO K, TAKIMOTO E. Solving linear regression with insensitive loss by boosting[J]. IEICE Transactions on Information and Systems, 2024, 107(3): 294-300.
[26] TIAN N, YANG J, WANG J J, et al. Integrated GBDT and logistic power customer complaint early warning method[C]//Proceedings of the 7th International Symposium on Advances in Electrical, Electronics, and Computer Engineering, 2022: 1478-1483.
[27] IOSIPOI L, VAKHRUSHEV A. SketchBoost: fast gradient boosted decision tree for multioutput problems[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, 2022: 25422-25435.
[28] BERKANI S, GRYECH I, GHOGHO M, et al. Data driven forecasting models for urban air pollution: moreair case study[J]. IEEE Access, 2023, 11: 133131-133142.
[29] EMAMI S, MARTíNEZ-MU?OZ G. Deep learning for multi-output regression using gradient boosting[J]. IEEE Access, 2024, 12: 17760-17772.
[30] LIU Z K, JIANG P, DE BOCK K W, et al. Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction[J]. Technological Forecasting and Social Change, 2024, 198: 122945.
[31] KAVZOGLU T, TEKE A. Predictive performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBoost) and natural gradient boosting (NGBoost)[J]. Arabian Journal for Science and Engineering, 2022, 47(6): 7367-7385.
[32] ARIF ALI Z, ABDULJABBAR Z H, TAHIR H A, et al. eXtreme gradient boosting algorithm with machine learning: a review[J]. Academic Journal of Nawroz University, 2023, 12(2): 320-334.
[33] PUNURI S B, KUANAR S K, KOLHAR M, et al. Efficient net-XGBoost: an implementation for facial emotion recognition using transfer learning[J]. Mathematics, 2023, 11(3): 776.
[34] SHUA Q Q, PENG H B, LI J K. Landslide susceptibility prediction modelling based on semi-supervised XGBoost model[J]. Geological Journal, 2024, 59(9): 2655-2667.
[35] MENG Q. LightGBM: a highly efficient gradient boosting decision tree[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, 2017: 3146-3154.
[36] REN J, YU Z P, GAO G L, et al. A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism[J]. Energy Reports, 2022, 8: 437-443.
[37] BRESCI V, LEMOINE M, GREMILLET L, et al. Nonresonant particle acceleration in strong turbulence: comparison to kinetic and MHD simulations[J]. Physical Review D, 2022, 106(2): 023028.
[38] XU K, HAN Z T, XU H S, et al. Rapid prediction model for urban floods based on a light gradient boosting machine approach and hydrological-hydraulic model[J]. International Journal of Disaster Risk Science, 2023, 14(1): 79-97.
[39] HARTANTO A D, NUR KHOLIK Y, PRISTYANTO Y. Stock price time series data forecasting using the light gradient boosting machine (LightGBM) model[J]. International Journal on Informatics Visualization, 2023, 7(4): 2270.
[40] ZHANG X. A model combining LightGBM and neural network for high-frequency realized volatility forecasting[C]//Proceedings of the Advances in Economics, Business and Management Research, 2022.
[41] DEMIR S, SAHIN E K. Predicting occurrence of liquefaction-induced lateral spreading using gradient boosting algorithms integrated with particle swarm optimization: pso-XGBoost, PSO-LightGBM, and PSO-CatBoost[J]. Acta Geotechnica, 2023, 18(6): 3403-3419.
[42] ZHANG T L, LI S J, JING X R, et al. Negative comment recognition model based on LightGBM[C]//Proceedings of the Second International Conference on Statistics, Applied Mathematics, and Computing Science, 2023: 179.
[43] REHMAN A, NAZ S, RAZZAK I. Leveraging big data analytics in healthcare enhancement: trends, challenges and opportunities[J]. Multimedia Systems, 2022, 28(4): 1339-1371.
[44] 杨顺, 郝晓燕, 马垚, 等. 基于生成对抗网络的差分隐私生成数据方法[J]. 计算机工程与设计, 2024, 45(1): 39-46.
YANG S, HAO X Y, MA Y, et al. Differential privacy generation data method based on generative adversarial network[J]. Computer Engineering and Design, 2024, 45(1): 39-46.
[45] ZHAO B, LI B, ZHANG J Q, et al. DCLGM: fusion recommendation model based on LightGBM and deep learning[J]. Neural Processing Letters, 2024, 56(1): 17.
[46] CAO Q, WU Y H, YANG J, et al. Greenhouse temperature prediction based on time-series features and LightGBM[J]. Applied Sciences, 2023, 13(3): 1610.
[47] LYU Z Q. A novel LightGBM-based industrial Internet intrusion detection method[J]. International Journal of Computer Applications in Technology, 2023, 71(3): 208-216.
[48] LIM Z Y, PANG Y H, OOI S Y, et al. Analysis of an optimized LightGBM based on different objective functions for customer churn prediction in telecom[C]//Proceedings of the 2023 7th International Conference on Automation, Control and Robots. Piscataway: IEEE, 2023: 102-107.
[49] BHUTTA A A, NISA M U, MIAN A N. Lightweight real-time WiFi-based intrusion detection system using LightGBM[J]. Wireless Networks, 2024, 30(2): 749-761.
[50] RUFO D D, DEBELEE T G, IBENTHAL A, et al. Diagnosis of diabetes mellitus using gradient boosting machine (LightGBM)[J]. Diagnostics, 2021, 11(9): 1714.
[51] HAMED E A, SALEM M A, BADR N L, et al. An efficient combination of convolutional neural network and LightGBM algorithm for lung cancer histopathology classification[J]. Diagnostics, 2023, 13(15): 2469.
[52] GAYATHRI S, ANAND A, VIJAYVARGIYA A, et al. EmoSens: emotion Recognition based on Sensor data analysis using LightGBM[C]//Proceedings of the 2022 IEEE International Conference on Electronics, Computing and Communication Technologies. Piscataway: IEEE, 2022: 1-6.
[53] REGO R C B, SILVA V M, FERNANDES V M. Predicting gender by first name using character-level machine learning[J]. arXiv:2106.10156, 2021.
[54] WANG D N, LI L, ZHAO D. Corporate finance risk prediction based on LightGBM[J]. Information Sciences, 2022, 602: 259-268.
[55] TANG M Z, MENG C H, WU H W, et al. Fault detection for wind turbine blade bolts based on GSG combined with CS-LightGBM[J]. Sensors, 2022, 22(18): 6763.
[56] SANI S H, XIA H B, MILISAVLJEVIC-SYED J, et al. Supply chain 4.0: a machine learning-based Bayesian-optimized LightGBM model for predicting supply chain risk[J]. Machines, 2023, 11(9): 888.
[57] GHIASI M M, ZENDEHBOUDI S. Application of decision tree-based ensemble learning in the classification of breast cancer[J]. Computers in Biology and Medicine, 2021, 128: 104089.
[58] HANCOCK J, KHOSHGOFTAAR T M. Leveraging LightGBM for categorical big data[C]//Proceedings of the 2021 IEEE Seventh International Conference on Big Data Computing Service and Applications. Piscataway: IEEE, 2021: 149-154.
[59] 于涛, 丁海旭, 黄卫民, 等. 面向复杂异质数据的集成学习研究综述[J]. 控制工程, 2023, 30(8): 1425-1435.
YU T, DING H X, HUANG W M, et al. A survey of ensemble learning for complex heterogeneous data[J]. Control Engineering of China, 2023, 30(8): 1425-1435.
[60] 邢长征, 徐佳玉. LightGBM混合模型在乳腺癌诊断中的应用[J]. 计算机工程与应用, 2024, 60(6): 330-338.
XING C Z, XU J Y. Hybrid LightGBM model for breast cancer diagnosis[J]. Computer Engineering and Applications, 2024, 60(6): 330-338. |