[1] 闪鑫, 陆晓, 翟明玉, 等. 人工智能应用于电网调控的关键技术分析[J]. 电力系统自动化, 2019, 43(1): 49-57.
SHAN X, LU X, ZHAI M Y, et al. Analysis of key technologies for artificial intelligence applied to power grid dispatch and control[J]. Automation of Electric Power Systems, 2019, 43(1): 49-57.
[2] 姚建国, 杨胜春, 单茂华. 面向未来互联电网的调度技术支持系统架构思考[J]. 电力系统自动化, 2013, 37(21): 52-59.
YAO J G, YANG S C, SHAN M H. Reflections on operation supporting system architecture for future interconnected power grid[J]. Automation of Electric Power Systems, 2013, 37(21): 52-59.
[3] 孙名扬, 于芳, 赵家庆, 等. 新一代调控系统一体化运维架构及关键技术[J]. 电力系统自动化, 2019, 43(22): 217-223.
SUN M Y, YU F, ZHAO J Q, et al. Integrated operation/maintenance architecture and key technologies of new generation dispatching and control system[J]. Automation of Electric Power Systems, 2019, 43(22): 217-223.
[4] ANDRéS A R, OTERO A, AMAVILAH V H. Using deep learning neural networks to predict the knowledge economy index for developing and emerging economies[J]. Expert Systems with Applications, 2021, 184: 115514.
[5] YAO W, HUANG P, JIA Z. Multidimensional LSTM networks to predict wind speed[C]//Proceedings of the 2018 37th Chinese Control Conference. Piscataway: IEEE, 2018: 7493-7497.
[6] 邓德军, 徐洪珍, 韦诗玥. E-V-ALSTM模型的股价预测[J]. 计算机工程与应用, 2023, 59(6): 101-112.
DENG D J, XU H Z, WEI S Y. Stock price prediction based on E-V-ALSTM model[J]. Computer Engineering and Applications, 2023, 59(6): 101-112.
[7] 高榕, 万以亮, 邵雄凯, 等. 面向改进的时空Transformer的交通流量预测模型[J]. 计算机工程与应用, 2023, 59(7): 250-260.
GAO R, WAN Y L, SHAO X K, et al. Traffic flow forecasting model for improved spatio-temporal transformer[J]. Computer Engineering and Applications, 2023, 59(7): 250-260.
[8] 张兴锐, 刘畅, 陈哲, 等. 基于时空图卷积网络的机场地铁短时客流预测[J]. 计算机工程与应用, 2023, 59(8): 322-330.
ZHANG X R, LIU C, CHEN Z, et al. Short-term passenger flow prediction of airport subway based on spatio-temporal graph convolutional network[J]. Computer Engineering and Applications, 2023, 59(8): 322-330.
[9] 王逸文, 王维莉. 基于LSTM-RELM组合模型的电商GMV预测研究[J]. 计算机工程与应用, 2023, 59(10): 321-327.
WANG Y W, WANG W L. Research on GMV prediction of E-commerce based on LSTM-RELM combination model[J]. Computer Engineering and Applications, 2023, 59(10): 321-327.
[10] 陈纬楠, 胡志坚, 岳菁鹏, 等. 基于长短期记忆网络和LightGBM组合模型的短期负荷预测[J]. 电力系统自动化, 2021, 45(4): 91-97.
CHEN W N, HU Z J, YUE J P, et al. Short-term load prediction based on combined model of long short-term memory network and light gradient boosting machine[J]. Automation of Electric Power Systems, 2021, 45(4): 91-97.
[11] SUN G, JIANG C, WANG X, et al. Short-term building load forecast based on a data-mining feature selection and LSTM-RNN method[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(7): 1002-1010.
[12] WANG X, DUAN Z, LIU L, et al. Multi-timescale load forecast of large power customers based on online data recovery and time series neural networks[J]. Journal of Circuits, Systems and Computers, 2022, 31(5): 2250088.
[13] 刘裕舸. 基于LSTM时间序列模型的电力变压器温度预测方法研究[J]. 红水河, 2022, 41(3): 75-80.
LIU Y G. Research on temperature prediction method of power transformer based on LSTM time series model[J]. Hongshui River, 2022, 41(3): 75-80.
[14] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137.
LU J X, ZHANG Q P, YANG Z H, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137.
[15] 王侃, 王孟洋, 刘鑫, 等. 融合自注意力机制与CNN-BiGRU的事件检测[J]. 西安电子科技大学学报, 2022, 49(5): 181-188.
WANG K, WANG M Y, LIU X, et al. Event detection by combining self-attention and CNN-BiGRU[J]. Journal of Xidian University, 2022, 49(5): 181-188.
[16] 蔡铭, 李响. 基于自适应选择的多策略粒子群算法[J]. 计算机仿真, 2021, 38(3): 239-244.
CAI M, LI X. Multi-strategy particle swarm optimization based on adaptive selection[J]. Computer Simulation, 2021, 38(3): 239-244.
[17] 李彤, 尹志宏, 张文斌. 快速傅里叶变换在交直流漏电识别中的应用研究[J]. 软件导刊, 2021, 20(10): 202-206.
LI T, YIN Z H, ZHANG W B. Research and application of fast Fourier transform in AC/DC leakage identification[J]. Software Guide, 2021, 20(10): 202-206. |